The coupling between electric, magnetic and elastic features in multiferroic materials is an emerging field in materials science, with important applications on alternative solid-state cooling technologies, energy harvesting and sensors/actuators. In this direction, we developed a thorough investigation of a multiferroic composite, comprising magnetocaloric/magnetostrictive Gd[Formula: see text]Si[Formula: see text]Ge[Formula: see text] microparticles blended into a piezo- and pyroelectric poly(vinylidene) fluoride (PVDF) matrix. Using a simple solvent casting technique, the formation and stabilization of PVDF electroactive phases are improved when the filler content increases from 2 to 12 weight fraction (wt.%). This effect greatly contributes to the magnetoelectric (ME) coupling, with the ME coefficient [Formula: see text] increasing from 0.3 V/cm.Oe to 2.2 V/cm.Oe, by increasing the amount of magnetic material. In addition, magnetic measurements revealed that the ME-coupling has influenced the magnetocaloric effect via a contribution from the electroactive polymer and hence leading to a multicaloric effect. These results contribute to the development of multifunctional systems for novel technologies.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6892869PMC
http://dx.doi.org/10.1038/s41598-019-54635-8DOI Listing

Publication Analysis

Top Keywords

multiferroic composite
8
pvdf matrix
8
multicaloric multiferroic
4
composite gdsige
4
gdsige microparticles
4
microparticles embedded
4
embedded ferroelectric
4
ferroelectric pvdf
4
matrix coupling
4
coupling electric
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!