Structural and solvent control over activation parameters for a pair of retro Diels-Alder reactions.

Sci Rep

Department of Chemistry, The Pennsylvania State University, University Park, PA, USA.

Published: December 2019

We report the temperature dependent NMR of two Diels-Alder adducts of furan: one formed with maleic anhydride and the other with N-methylmaleimide. These adducts are the products of so-called 'click' reactions, widely valued for providing simple, reliable, and robust reactivity. Under our experimental conditions, these adducts undergo a retro Diels-Alder reaction and we use our temperature dependent NMR to determine the rates of these reactions at multiple temperatures-ultimately providing estimates of the activation parameters for the reversion. We repeat these measurements in three solvents. We find that, in all solvents, the barrier to reversion is larger for the adduct formed with N-methylmaleimide. The barrier to reversion for this adduct is relatively insensitive to changes in solvent while the adduct formed with maleic anhydride responds more strongly to changes in solvent polarity. The differences in reaction barrier and solvent dependence arises because the adduct formed with N-methylmalemide is more stable-leading to a larger barrier to reversion-while the adduct formed with maleic anhydride experiences a larger change in dipole during the reaction-leading to a larger solvent dependence.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6892874PMC
http://dx.doi.org/10.1038/s41598-019-54156-4DOI Listing

Publication Analysis

Top Keywords

adduct formed
16
formed maleic
12
maleic anhydride
12
activation parameters
8
retro diels-alder
8
temperature dependent
8
dependent nmr
8
barrier reversion
8
changes solvent
8
solvent dependence
8

Similar Publications

The apurinic/apyrimidinic site (AP site) is a highly mutagenic and cytotoxic DNA lesion. Normally, AP sites are removed from DNA by base excision repair (BER). Methoxyamine (MOX), a BER inhibitor currently under clinical trials as a tumor sensitizer, forms adducts with AP sites (AP-MOX) resistant to the key BER enzyme, AP endonuclease.

View Article and Find Full Text PDF

Purpose: The optic nerve (ON) is mechanically perturbed by eye movements that shift cerebrospinal fluid (CSF) within its surrounding dural sheath. This study compared changes in ON length and CSF volume within the intraorbital ON sheath caused by eye movements in healthy subjects and patients with optic neuropathies.

Methods: Twenty-one healthy controls were compared with 11 patients having primary open angle glaucoma (POAG) at normal intraocular pressure (IOP), and 11 with chronic non-arteritic anterior ischemic optic neuropathy (NA-AION).

View Article and Find Full Text PDF

Haloacetonitriles (HANs) are a class of toxic drinking water disinfection byproducts (DBPs). However, the toxicity mechanisms of HANs remain unclear. We herein investigated the structure-related in vitro toxicity of 6 representative HANs by utilizing complementary bioanalytical approaches.

View Article and Find Full Text PDF

Computational Study of the 1,3-Dipolar Cycloaddition between Criegee Intermediates and Linalool: Atmospheric Implications.

J Phys Chem A

January 2025

Centro de Bioinformática, Simulación y Modelado (CBSM), Departamento de Bioinformática, Facultad de Ingeniería, Universidad de Talca, Talca 3465548, Chile.

In this research, we investigated the essential role of biogenic volatile organic compound emissions in regulating tropospheric ozone levels, atmospheric chemistry, and climate dynamics. We explored linalool ozonolysis and secondary organic aerosol formation mechanisms, providing key insights into atmospheric processes. Computational techniques, such as density functional theory calculations and molecular dynamics simulations, were employed for the analysis.

View Article and Find Full Text PDF

Taming highly enolizable aldehydes for catalytic asymmetric C-C coupling with nucleophiles remains an elusive challenge compared to widely explored simple alkyl or aryl aldehydes. Herein, we use ThDP-dependent enzymes to realize the direct C-C coupling of highly enolizable 2-phosphonate aldehydes with in situ-generated dynamically reversible nucleophiles (acyl anions). Unlike NHC-mediated reactions that yield complex mixtures of multiple adducts, our enzymatic process selectively produces biologically active β-hydroxy phosphonates with high yields (up to 95%) and excellent enantioselectivities (up to 99% ee).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!