Characterization of protein interaction surface on fatty acyl selectivity of starter condensation domain in lipopeptide biosynthesis.

Appl Microbiol Biotechnol

State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China.

Published: January 2020

Lipopeptides are important non-ribosomal peptide synthetases (NRPSs) products with broad therapeutic potential in biotechnology and biopharmaceutical applications. Fatty acyl modifications in N-terminal of lipopeptides have attracted wide interest in the engineering processes of altered fatty acyl selectivity. In this study, we focused on the starter condensation domain of antibiotic A54145 (lptC1) and its indiscriminate selectivity of fatty acyl substrates, which results in multi-component products. Using in silico analysis, five site-directed mutations at protein-protein interface were identified with altered activity and selectivity towards wild type lptC1. The variants Y149W and A330T exhibited changed substrate selectivity to prefer longer branched chain fatty acyl substrate, while T16A and A350D showed improved selectivity for shorter linear chain fatty acyl substrates. Subsequently, molecular dynamics (MD) simulations were performed to analyze the impact of these residues on the changes of catalytic activity and conformation. Through in silico analysis, the altered binding free energy were coincident with the corresponding activity performance of the variants, and surface forces indicated that other factors or processes may influence the activity and selectivity. Moreover, the MD results revealed even altered active center conformations, implying the importance of these interface residues affected on distant active center thus reflected to catalysis activity. Based on the biochemistry and computational results, our work provides detailed insights from molecular and dynamics aspects into the role of C1's interface residues during complex NRPS biosynthesis machinery, prompting further rational engineering for lipopeptide catalysis.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00253-019-10251-0DOI Listing

Publication Analysis

Top Keywords

fatty acyl
24
acyl selectivity
8
starter condensation
8
condensation domain
8
acyl substrates
8
silico analysis
8
activity selectivity
8
chain fatty
8
molecular dynamics
8
active center
8

Similar Publications

A murine model of acute and prolonged abdominal sepsis, supported by intensive care, reveals time-dependent metabolic alterations in the heart.

Intensive Care Med Exp

January 2025

Clinical Division and Laboratory of Intensive Care Medicine, Department of Cellular and Molecular Medicine, KU Leuven, Herestraat 49, O&N1 Box 503, 3000, Louvain, Belgium.

Background: Sepsis-induced cardiomyopathy (SICM) often occurs in the acute phase of sepsis and is associated with increased mortality due to cardiac dysfunction. The pathogenesis remains poorly understood, and no specific treatments are available. Although SICM is considered reversible, emerging evidence suggests potential long-term sequelae.

View Article and Find Full Text PDF

Further Characterization of Lipase B from Ustilago maydis Expressed in Pichia pastoris: a Member of the Candida antarctica Lipase B-like Superfamily.

Appl Biochem Biotechnol

January 2025

Unidad de Biotecnología Industrial, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco A.C, 45019, Zapopan, Jal, Mexico.

Lipases from the basidiomycete fungus Ustilago maydis are promising but underexplored biocatalysts due to their high homology with Candida antarctica lipases. This study provides a comprehensive characterization of a recombinant CALB-like lipase from U. maydis, expressed in Pichia pastoris (rUMLB), and compares its properties with those of the well-studied recombinant lipase B from C.

View Article and Find Full Text PDF

Background: Pancreatic ductal adenocarcinoma (PDAC) is an aggressive lethal malignancy with limited options for treatment and a 5-year survival rate of 11% in the United States. As for other types of tumors, such as colorectal cancer, aberrant lipid synthesis and reprogrammed lipid metabolism have been suggested to be associated with PDAC development and progression.

Aim: To identify the possible involvement of lipid metabolism in PDAC by analyzing in tumoral and non-tumoral tissues the expression level of the most relevant genes involved in the long-chain fatty acid (FA) import into cell.

View Article and Find Full Text PDF

Cyanobacteria are widespread, photosynthetic, gram-negative bacteria that generate numerous bioactive secondary metabolites complex biosynthetic enzymatic machinery. The model cyanobacterium sp. strain PCC 7002, hereafter referred to as PCC 7002, contains a type I polyketide synthase (PKS), termed olefin synthase (OlsWT), that synthesizes 1-nonadecene and 1,14-nonadecadiene: α-olefins that are important for growth at low temperatures.

View Article and Find Full Text PDF

Lipid A, a well-known saccharolipid, acts as the inner lipid-glycan anchor of lipopolysaccharides in Gram-negative bacterial cell membranes and functions as an endotoxin. Its structure is composed of two glucosamines with β(1 → 6) linkages and various fatty acyl and phosphate groups. The lipid A structure can be used for the identification of bacterial species, but its complexity poses significant structural characterization challenges.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!