In third generation sequencing, the production of quality data requires the selection of molecules longer than ∼20 kbp, but the size selection threshold of most purification technologies is smaller than this target. Here, we describe a technology operated in a capillary with a tunable selection threshold in the range of 3 to 40 kbp controlled by an electric field. We demonstrate that the selection cut-off is sharp, the purification yield is high, and the purification throughput is scalable. We also provide an analytical model that the actuation settings of the filter. The selection of high molecular weight genomic DNA from the melon Cucumis melo L., a diploid organism of ∼0.45 Gbp, is then reported. Linked-read sequencing data show that the N50 phase block size, which scores the correct representation of two chromosomes, is enhanced by a factor of 2 after size selection, establishing the relevance and versatility of our technology.

Download full-text PDF

Source
http://dx.doi.org/10.1039/c9lc00965eDOI Listing

Publication Analysis

Top Keywords

high molecular
8
molecular weight
8
linked-read sequencing
8
size selection
8
selection threshold
8
selection
7
tunable filter
4
filter high
4
weight dna
4
dna selection
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!