Plant growth-promoting bacteria (PGPB) are known to increase plant tolerance to several abiotic stresses, specifically those from dry and salty environments. In this study, we examined the endophyte bacterial community of five plant species growing in the Thar desert of Pakistan. Among a total of 368 culturable isolates, 58 Bacillus strains were identified from which the 16 most divergent strains were characterized for salt and heat stress resilience as well as antimicrobial and plant growth-promoting (PGP) activities. When the 16 Bacillus strains were tested on the non-host plant Arabidopsis thaliana, B. cereus PK6-15, B. subtilis PK5-26 and B. circulans PK3-109 significantly enhanced plant growth under salt stress conditions, doubling fresh weight levels when compared to uninoculated plants. B. circulans PK3-15 and PK3-109 did not promote plant growth under normal conditions, but increased plant fresh weight by more than 50% when compared to uninoculated plants under salt stress conditions, suggesting that these salt tolerant Bacillus strains exhibit PGP traits only in the presence of salt. Our data indicate that the collection of 58 plant endophytic Bacillus strains represents an important genomic resource to decipher plant growth promotion at the molecular level.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6890672PMC
http://dx.doi.org/10.1038/s41598-019-54685-yDOI Listing

Publication Analysis

Top Keywords

bacillus strains
16
plant
12
plant growth
12
plant growth-promoting
8
salt stress
8
stress conditions
8
fresh weight
8
compared uninoculated
8
uninoculated plants
8
strains
6

Similar Publications

Isolation and identification of the causal agent of gummy stem blight disease in Cucumis sativus caused by a bacterial pathogen in China.

Sci Rep

January 2025

College of Plant Protection, Biocontrol Engineering Laboratory of Crop Diseases and Pests of Gansu Province, Gansu Agricultural University, Lanzhou, 730070, China.

Recently, a new bacterial disease was detected on cucumber stalks. In order to study the pathogenesis of this disease, the pathogenic bacteria were isolated and identified on the basis of morphological and molecular characteristics, and further analyzed for pathogenicity and antagonistic evaluation. Pathogenicity analysis showed that HlJ-3 caused melting decay and cracking in cucumber stems, and the strain reisolated from re-infected cucumber stalks was morphologically identical to HlJ-3 colonies, which is consistent with the Koch's postulates.

View Article and Find Full Text PDF

Probiotics are widely used for their health promoting effects, though a lot remain to be discovered, particularly on their mechanisms of action at the molecular level. The functional genomic approach is an appropriate method to decipher how probiotics may influence human cell fate and therefore contribute to their health benefit. In the present work, we focused on Shouchella clausii (formerly named Bacillus then Alkalihalobacillus clausii), a spore-forming bacterium that is commercially available as a probiotic for the prevention and the treatment of intestinal dysbiosis and related gastrointestinal disorders, such as diarrhoea.

View Article and Find Full Text PDF

Over the last decade, the environmental and wellness cost of antibiotic drug resistance to the societies have been astounding and require urgent attention Metal oxide nanomaterials have been achieved a pull-on deal with its entire applications in biological and photocatalytic applications. The present study conducts a comparative investigation on chemical and biogenic synthesis of zirconium dioxide (ZrO) nanoparticles aimed at enhancing their efficacy in their applications. The plant extract of Passiflora edulis act as a reducing and capping properties offering a sustainable and eco-friendly alternative.

View Article and Find Full Text PDF

MAP Kinase Signaling at the Crossroads of Inflammasome Activation.

Immunol Rev

January 2025

Department of Internal Medicine and Paediatrics, Ghent University, Ghent, Belgium.

Inflammasomes are crucial mediators of both antimicrobial host defense and inflammatory pathology, requiring stringent regulation at multiple levels. This review explores the pivotal role of mitogen-activated protein kinase (MAPK) signaling in modulating inflammasome activation through various regulatory mechanisms. We detail recent advances in understanding MAPK-mediated regulation of NLRP3 inflammasome priming, licensing and activation, with emphasis on MAPK-induced activator protein-1 (AP-1) signaling in NLRP3 priming, ERK1 and JNK in NLRP3 licensing, and TAK1 in connecting death receptor signaling to NLRP3 inflammasome activation.

View Article and Find Full Text PDF

Investigation of the anti-Huanglongbing effects using antimicrobial lipopeptide and phytohormone complex powder prepared from MG-2 fermentation.

Front Microbiol

December 2024

National Key Laboratory of Germplasm Innovation and Utilization of Horticultural Crops, National Fruit Free-Virus Germplasm Resource Indoor Conservation Center, Department of Horticulture and Forestry, Huazhong Agricultural University, Wuhan, China.

Global citrus production has been severely affected by citrus Huanglongbing (HLB) disease, caused by Candidatus Liberibacter asiaticus (Clas), and the development of effective control methods are crucial. This study employed antimicrobial lipopeptide and phytohormone complex powder (L1) prepared from the fermentation broth of the endophytic plant growth promoting bacterium (PGPB) of strain MG-2 to treat Liberibacter asiaticus (Las)-infected ' 'Chun Jian' plants. Real-time fluorescence quantitative polymerase chain reaction (qPCR) and PCR were employed for disease detection.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!