Inkjet printing of enzymes can facilitate many novel applications where a small amount of materials need to be deposited in a precise and flexible manner. However, maintaining the satisfactory activity of inkjet printed enzyme is a challenging task due to the requirements of ink rheology and printhead parameters. Thus to find optimum inkjetting conditions we studied the effects of several ink formulation and jetting parameters on lysozyme activity using a piezoelectric printhead. Within linear activity range of protein concentrations ink containing 50 µg/mL lysozyme showed a satisfactory activity retention of 85%. An acceptable activity of jetted ink was found at pH 6.2 and ionic strength of 0.06 molar. Glycerol was found to be an effective viscosity modifier (10-15 mPa.s), humectant and protein structure stabilizer for the prepared ink. A non-ionic surfactant when used just below critical micelle concentration was found to be favourable for the jetted inks. An increase in activity retention was observed for inks jetted after 24 hours of room temperature incubation. However, no additional activity was seen for inkjetting above the room temperature. Findings of this study would be useful for formulating other protein-based inks and setting their inkjet printing parameters without highly compromising the functionality.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6890784 | PMC |
http://dx.doi.org/10.1038/s41598-019-54723-9 | DOI Listing |
ACS Sens
January 2025
School of Chemistry and Molecular Engineering, In Situ Devices Research Center, Shanghai Key Laboratory for Urban Ecological Processes and Eco-Restoration, East China Normal University, Shanghai 200241, China.
Monitoring volatile organic compounds (VOCs) is crucial for ensuring safety and health. In this study, we introduce a strategy to engineer a chromatography-inspired single-sensor (CISS) e-nose tailored for VOC monitoring. This approach overcomes the limitations of traditional methodologies and conventional e-noses.
View Article and Find Full Text PDFNat Commun
January 2025
Department of Civil and Systems Engineering, Johns Hopkins University, Baltimore, MD, USA.
Direct Ink Writing, an extrusion-based 3D printing technique, has attracted growing interest due to its ability to process a broad range of materials and integrate multifunctional printheads with features such as shape-changing nozzles, in-situ curing, material switching, and material mixing. Despite these advancements, incorporating auxiliary controls into Geometry Code (G-Code), the standard programming language for these printers, remains challenging. G-Code's line-by-line execution requires auxiliary control commands to interrupt the print path motion, causing defects in the printed structure.
View Article and Find Full Text PDFInt J Pharm
January 2025
Departamento de Farmacología, Farmacia y Tecnología Farmacéutica, I+D Farma (GI-1645), Facultad de Farmacia, Instituto de Materiales (iMATUS) and Health Research Institute of Santiago de Compostela (IDIS), Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain; FABRX Artificial Intelligence, Carretera de Escairón, 14, Currelos (O Saviñao) CP 27543, Spain; FABRX Ltd., Henwood House, Henwood, Ashford, Kent TN24 8DH, UK; Department of Pharmaceutics, UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK. Electronic address:
Compounding medications in pharmacies is a common practice for patients with prescriptions that are not available commercially, but it is a laborious and error-prone task. The incorporation of emerging technologies to prepare personalised medication, such as 3D printing, has been delayed in smaller pharmacies due to concerns about potential workflow disruptions and learning curves associated with novel technologies. This study examines the use in a community pharmacy of a pharmaceutical 3D printer to auto-fill capsules and blisters using semisolid extrusion, incorporating an integrated quality control system.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Integrated Research Base of Southern Fruit and Vegetable Preservation Technology, Fuli Institute of Food Science, Zhejiang University, Hangzhou 310058, China; Innovation Center of Yangtze River Delta, Zhejiang University, Jiaxing 314102, China. Electronic address:
Starch-ferulic acid (FA) composites have been developed for medical and food fields, while little focus is caused on their use in functional products by 3D printing. In this work, dynamic high-pressure microfluidization was employed to treat starch at various concentrations, for preparing modified starch-FA composites. The high-performance liquid chromatography results showed that an increased starch concentration was conducive to a high yield of composite with enhanced binding of FA.
View Article and Find Full Text PDFBioelectrochemistry
January 2025
University of Bologna, Department of Industrial Chemistry "Toso Montanari", Center of Chemical Catalysis-C(3), Via Piero Gobetti 85, 40129 Bologna, Italy. Electronic address:
Print-Light-Synthesis (PLS) combines the inkjet printing of a ruthenium precursor ink with the simultaneous photo-induced generation of ruthenium oxide films. During PLS, inkjet-printing generates on conductive as well as insulating substrates micrometer-thin reaction volumes that contain with high precision defined precursor loadings. Upon direct UV light irradiation, the Ru precursor converts to RuO while all other ink components escape in the gas phase.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!