Background: Although amyloid-β (Aβ) and microstructural brain changes are both effective biomarkers of Alzheimer's disease, their independent or synergistic effects on cognitive decline are unclear.
Objective: To examine associations of Aβ and brain microstructure with cognitive decline in amnestic mild cognitive impairment and dementia.
Methods: Restriction spectrum imaging, cerebrospinal fluid Aβ, and longitudinal cognitive data were collected on 23 healthy controls and 13 individuals with mild cognitive impairment or mild to moderate Alzheimer's disease. Neurite density (ND) and isotropic free water diffusion (IF) were computed in fiber tracts and cortical regions of interest. We examined associations of Aβ with regional and whole-brain microstructure, and assessed whether microstructure mediates effects of Aβ on cognitive decline.
Results: Lower ND in limbic and association fibers and higher medial temporal lobe IF predicted baseline impairment and longitudinal decline across multiple cognitive domains. ND and IF predicted cognitive outcomes after adjustment for Aβ or whole-brain microstructure. Correlations between microstructure and cognition were present for both amyloid-positive and amyloid-negative individuals. Aβ correlated with whole-brain, rather than regional, ND and IF.
Conclusion: Aβ correlates with widespread microstructural brain changes, whereas regional microstructure correlates with cognitive decline. Microstructural abnormalities predict cognitive decline regardless of amyloid, and may inform about neural injury leading to cognitive decline beyond that attributable to amyloid.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7266036 | PMC |
http://dx.doi.org/10.3233/JAD-190871 | DOI Listing |
Brain Topogr
January 2025
Department of Neurology, Yale University School of Medicine, 333 Cedar Street, New Haven, CT, 06520, USA.
Aberrant large-scale resting-state functional connectivity (rsFC) has been frequently documented in ischemic stroke. However, it remains unclear about the altered patterns of within- and across-network connectivity. The purpose of this meta-analysis was to identify the altered rsFC in patients with ischemic stroke relative to healthy controls, as well as to reveal longitudinal changes of network dysfunctions across acute, subacute, and chronic phases.
View Article and Find Full Text PDFBrain Struct Funct
January 2025
Department of Medical Biophysics, Schulich School of Medicine & Dentistry, Western University, 1151 Richmond Street, North London, ON, N6A 5C1, Canada.
The dual task cost of gait (DTC) is an accessible and cost-effective test that can help identify individuals with cognitive decline and dementia. However, its neural substrate has not been widely described. This study aims to investigate the neural substrate of the high DTC in older adults across the spectrum of cognitive decline.
View Article and Find Full Text PDFAIDS Res Ther
January 2025
University of Khartoum, Khartoum, Sudan.
Background: Thyroid disorders have significant clinical sequelae, including impaired growth in children, metabolic abnormalities, and impaired cognitive function. However, available studies on burden of thyroid diseases in people with human immunodeficiency virus (HIV), particularly its prevalence and its interaction with HIV related factors (like CD4 count), are controversial. This review aimed to provide a comprehensive summary and analysis on the extent of thyroid dysfunctions in this population.
View Article and Find Full Text PDFBMC Neurol
January 2025
Faculty of Medicine, Department of Neurology, Al-Quds University, Jerusalem, Palestine.
Background: Vanishing white matter disease (VWMD) is a rare autosomal recessive leukoencephalopathy. It is typified by a gradual loss of white matter in the brain and spinal cord, which results in impairments in vision and hearing, cerebellar ataxia, muscular weakness, stiffness, seizures, and dysarthria cogitative decline. Many reports involve minors.
View Article and Find Full Text PDFAgeing Res Rev
January 2025
CogT Lab, Department of Psychiatry and Behavioral Sciences, Stanford University. Electronic address:
Computerized cognitive training (CCT) is a frontline therapy to prevent or slow age-related cognitive decline. A prerequisite for CCT research to provide clinically relevant improvements in cognition is to understand effective engagement, i.e.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!