Exercise has been shown to be protective against the risk of dementias, including Alzheimer's disease (AD). Intervention studies have demonstrated its ability to mitigate cognitive and behavioral impairments and reduce disease in both humans and animals. However, information is lacking in regard to the volume and intensity, as well as timing of exercise onset with respect to disease stage, which produces optimal benefits. Here, utilizing the Tg2576 mouse, a model of AD-like parenchymal amyloid pathology and cognitive impairment, we sought to understand the effects of different lengths of daily access to a running wheel on advanced stage disease. This study is the first to determine the benefits of long-term exercise (4 months of voluntary running) and different periods of daily access to a running wheel (0 h, 1 h, 3 h, and 12 h running wheel access) beginning in 14-month-old Tg2576 mice, an age with significant amyloid pathology. We found that exercising Tg2576 animals showed lower levels of some aspects of AD pathology and reduced behavioral dysfunction compared to sedentary Tg2576 animals. High intensity exercise, rather than high volume exercise, was generally most beneficial in reducing amyloid pathology. Our results suggest that engaging in vigorous exercise programs, even after living a sedentary life, may lead to a measurable reduction in AD pathology and preservation of some cognitive abilities.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11686454PMC
http://dx.doi.org/10.3233/JAD-190810DOI Listing

Publication Analysis

Top Keywords

amyloid pathology
12
running wheel
12
tg2576 mouse
8
mouse model
8
alzheimer's disease
8
daily access
8
access running
8
tg2576 animals
8
exercise
6
running
5

Similar Publications

Introduction: Alzheimer's disease (AD) in Down syndrome (DS) is associated with changes in brain structure. It is unknown if thickness and volumetric changes can identify AD stages and if they are similar to other genetic forms of AD.

Methods: Magnetic resonance imaging scans were collected for 178 DS adults (106 nonclinical, 45 preclinical, and 27 symptomatic).

View Article and Find Full Text PDF

Mannose Promotes β-Amyloid Pathology by Regulating BACE1 Glycosylation in Alzheimer's Disease.

Adv Sci (Weinh)

January 2025

Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, School of Medicine, Xiamen University, Xiangan South Road, Xiamen, Fujian, 361102, P. R. China.

Hyperglycemia accelerates Alzheimer's disease (AD) progression, yet the role of monosaccharides remains unclear. Here, it is demonstrated that mannose, a hexose, closely correlates with the pathological characteristics of AD, as confirmed by measuring mannose levels in the brains and serum of AD mice, as well as in the serum of AD patients. AD mice are given mannose by intra-cerebroventricular injection (ICV) or in drinking water to investigate the effects of mannose on cognition and AD pathological progression.

View Article and Find Full Text PDF

Background: The imbalance of glutamate (Glu) and gamma-aminobutyric acid (GABA) neurotransmitter system plays a crucial role in the pathogenesis of Alzheimer's disease (AD). Riluzole is a Glu modulator originally approved for amyotrophic lateral sclerosis that has shown potential neuroprotective effects in various neurodegenerative disorders. However, whether riluzole can improve Glu and GABA homeostasis in AD brain and its related mechanism of action remain unknown.

View Article and Find Full Text PDF

Alzheimer's disease (AD) is the most commonly occurring brain disorder, characterized by the accumulation of amyloid-β (Aβ) and tau, subsequently leading to neurocognitive decline. 3-Amino-1-propanesulfonic acid (TPS) and its prodrug, currently under clinical trial III, serve as promising therapeutic agents targeting Aβ pathology by specifically preventing monomer-to-oligomer formation. Inspired by the potency of TPS prodrug, we hypothesized that conjugating TPS with human serum albumin (HSA) could enhance brain delivery and synergistically inhibit Aβ aggregation in mild to moderate AD.

View Article and Find Full Text PDF

Neurons located in the layer II of the entorhinal cortex (ECII) are the primary site of pathological tau accumulation and neurodegeneration at preclinical stages of Alzheimer's disease (AD). Exploring the alterations that underlie the early degeneration of these cells is essential to develop therapies that delay disease onset. Here we performed cell-type specific profiling of the EC at the onset of human AD neuropathology.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!