Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Severe spinal cord injury (SCI) results in permanent functional deficits, which despite pre-clinical advances, remain untreatable. Combinational approaches, including the implantation of bioengineered scaffolds are likely to promote significant tissue repair. However, this critically depends on the extent to which host tissue can integrate with the implant. In the present paper, blood vessel formation and maturation were studied within and around implanted micro-structured type-I collagen scaffolds at 10 weeks post implantation in adult rat mid-cervical spinal cord lateral funiculotomy injuries. Morphometric analysis revealed that blood vessel density within the scaffold was similar to that of the lateral white matter tracts that the implant replaced. However, immunohistochemistry for zonula occludens-1 (ZO-1) and endothelial barrier antigen revealed that scaffold microvessels remained largely immature, suggesting poor blood-spinal cord barrier (BSB) reformation. Furthermore, a band of intense ZO-1-immunoreactive fibroblast-like cells isolated the implant. Spinal cord vessels outside the ZO-1-band demonstrated BSB-formation, while vessels within the scaffold generally did not. The formation of a double-layered fibrotic and astroglial scar around the collagen scaffold might explain the relatively poor implant-host integration and suggests a mechanism for failed microvessel maturation. Targeted strategies that improve implant-host integration for such biomaterials will be vital for future tissue engineering and regenerative medicine approaches for traumatic SCI.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1088/1748-605X/ab5e52 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!