Cryptococcal meningitis is a lethal disease with few therapeutic options. Induction therapy with fluconazole has been consistently demonstrated to be associated with suboptimal microbiological and clinical outcomes. Exposure to fluconazole causes dynamic changes in antifungal susceptibility, which are associated with the development of aneuploidy. The implications of this phenomenon for pharmacodynamics of fluconazole for cryptococcal meningitis are poorly understood. The pharmacodynamics of fluconazole were studied using a hollow-fiber infection model (HFIM) and a well-characterized murine model of cryptococcal meningoencephalitis. The relationship between drug exposure and both antifungal killing and the emergence of resistance was quantified. The same relationships were further evaluated in a recently described group of patients with cryptococcal meningitis undergoing induction therapy with fluconazole at 800 to 1,200 mg/day. The pattern of emergence of fluconazole resistance followed an "inverted U." Resistance amplification was maximal and suppressed at ratios of the area under the concentration-time curve for the free, unbound fraction of the drug to the MIC (AUC:MIC) of 34.5 to 138 and 305.6, respectively. Emergence of resistance was observed with an AUC:MIC of 231.4. Aneuploidy with duplication of chromosome 1 was demonstrated to be the underlying mechanism in both experimental models. The pharmacokinetic (PK)-pharmacodynamic model accurately described the PK, antifungal killing, and emergence of resistance. Monte Carlo simulations from the clinical pharmacokinetic-pharmacodynamic model showed that only 12.8% of simulated patients receiving fluconazole at 1,200 mg/day achieved sterilization of the cerebrospinal fluid (CSF) after 2 weeks and that 83.4% had a persistent subpopulation that was resistant to fluconazole. Fluconazole is primarily ineffective due to the emergence of resistance. Treatment with 1,200 mg/day leads to the killing of a susceptible subpopulation but is compromised by the emergence of resistance. Cryptococcal meningitis is a lethal disease with few treatment options. The incidence remains high and intricately linked with the HIV/AIDS epidemic. In many parts of the world, fluconazole is the only agent that is available for the initial treatment of cryptococcal meningitis despite considerable evidence that it is associated with suboptimal microbiological and clinical outcomes. Fluconazole has a fungistatic mode of action: it predominantly inhibits growth rather than causing fungal killing. Our work shows that the pattern of fluconazole activity is caused by the emergence of resistance in not detected by standard susceptibility tests, with chromosomal duplication/aneuploidy as the main mechanism. Resistance emergence is related to drug exposure and occurs with the use of clinically relevant regimens. Hence, fluconazole (and potentially other agents that target 14-alpha-demethylase) is compromised by an intrinsic property that limits its effectiveness. However, this resistance may be potentially overcome by dosage escalation or the use of combination therapy.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6890991PMC
http://dx.doi.org/10.1128/mBio.02575-19DOI Listing

Publication Analysis

Top Keywords

emergence resistance
28
cryptococcal meningitis
24
fluconazole
14
resistance
11
emergence
9
initial treatment
8
treatment cryptococcal
8
resistance cryptococcal
8
meningitis lethal
8
lethal disease
8

Similar Publications

The role of fecal microbiota transplantation in the treatment of acute graft-versus-host disease.

J Cancer Res Ther

December 2024

Institute of Infection, Immunology and Tumor Microenvironment, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Medicine, Wuhan University of Science and Technology, Wuhan, China.

Allogeneic hematopoietic stem cell transplantation (allo-HSCT) is one of the most important methods for treating a wide range of hematologic malignancies and bone marrow failure diseases. However, graft-versus-host disease (GVHD), a major complication associated with this method, can seriously affect the survival and quality of life of patients. Acute GVHD (aGVHD) occurs within 100 days after transplantation, and gastrointestinal aGVHD (GI-aGVHD) is one of the leading causes of nonrecurrent death after allo-HSCT.

View Article and Find Full Text PDF

Untangling the role of single-atom substitution on the improvement of the hydrogen evolution reaction of YNS MXene in acidic media.

Phys Chem Chem Phys

January 2025

Departamento de Física Aplicada - Instituto de Ciencia de Materiales, Matter at High Pressure (MALTA) Consolider Team, Universidad de Valencia, Edificio de Investigación, C/Dr Moliner 50, Burjassot, 46100, Valencia, Spain.

The production of hydrogen (H) fuel through electrocatalysis is emerging as a sustainable alternative to conventional and environmentally harmful energy sources. However, the discovery of cost-effective and efficient materials for this purpose remains a significant challenge. In this study, we explore the potential of the transition-metal-substituted YNS MXene as a promising candidate for hydrogen production through the hydrogen evolution reaction (HER).

View Article and Find Full Text PDF

A major risk to the poultry industry is antimicrobial resistance (AMR), specifically with regard to Mycoplasma gallisepticum (MG) infections. The sensitivity patterns of 100 MG isolates to biocides and antibiotics were examined in this study to clarify the interactions between antimicrobial agents and resistance mechanisms. The antimicrobial activity against MG was assessed using broth microdilution, and the results are shown as the minimum inhibitory concentration (MIC) for each strain, the MIC distribution (range), the MIC, and/or the MIC.

View Article and Find Full Text PDF

derived outer membrane vesicles mediated bacterial virulence, antibiotic resistance, host immune responses and clinical applications.

Virulence

December 2025

Henan International Joint Laboratory of Children's Infectious Diseases, Department of Neonatology, Henan Province Engineering Research Center of Diagnosis and Treatment of Pediatric Infection and Critical Care, Children's Hospital Affiliated to Zhengzhou University, Henan Children's Hospital, Zhengzhou Children's Hospital, Zhengzhou, China.

is a gram-negative pathogen that can cause multiple diseases including sepsis, urinary tract infections, and pneumonia. The escalating detections of hypervirulent and antibiotic-resistant isolates are giving rise to growing public concerns. Outer membrane vesicles (OMVs) are spherical vesicles containing bioactive substances including lipopolysaccharides, peptidoglycans, periplasmic and cytoplasmic proteins, and nucleic acids.

View Article and Find Full Text PDF

Emerging carbapenem-resistant in a tertiary care hospital in Lima, Peru.

Microbiol Spectr

January 2025

Instituto de Medicina Tropical Alexander von Humboldt, Universidad Peruana Cayetano Heredia, Lima, Peru.

The emergence of carbapenem-resistant (CRKP) poses a significant public health threat, particularly in low- and middle-income countries (LMICs) with limited surveillance and treatment options. This study examines the genetic diversity, resistance patterns, and transmission dynamics of 66 CRKP isolates recovered over 5 years (2015-2019) after the first case of CRKP was identified at a tertiary care hospital in Lima, Peru. Our findings reveal a shift from to as the dominant carbapenemase gene after 2017.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!