Longitudinal optic neuritis-unrelated visual evoked potential changes in NMO spectrum disorders.

Neurology

From the Department of Neurology, Medical Faculty (M.R., J. Harmel, J.G., H.-P.H., O.A., P.A.), and Department of Neurology, Center for Neurology and Neuropsychiatry, LVR-Klinikum (M.R.), Heinrich Heine University Düsseldorf; NeuroCure Clinical Research Center and Experimental and Clinical Research Center (H.Z., A.U.B., F.P.), Charité Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, and Max Delbrueck Center for Molecular Medicine, Germany; Department of Neurology (A.U.B.), University of California Irvine; Department of Neurology (A.H., M.B.), University of Würzburg; Department of Neurology (M.B.), Caritas Hospital, Bad Mergentheim; Clinical Neuroimmunology and Neurochemistry (M.W.H.), Department of Neurology (C.T.), Hannover Medical School; Department of Neurology (C.S., I.A., I.K., K.H.), St. Josef Hospital, Ruhr University Bochum, Germany; Department of Neurology (I.A.), Sechenov First Moscow State Medical University, Moscow, Russia; Marianne-Strauß-Klinik (I.K.), Behandlungszentrum Kempfenhausen für Multiple Sklerose Kranke, Berg; Institute of Clinical Neuroimmunology (J. Halva, T.K., H.P.), University Hospital, Ludwig-Maximilians University, Munich; Molecular Neuroimmunology Group, Department of Neurology (S.J., B.W.), University of Heidelberg, Germany; Department of Neurology (P.R.), Medical University of Vienna, Austria; Institute of Neuropathology (M.S.W.) and Department of Neurology (M.S.W., H.P., P.K.), University Medical Center Göttingen; Department of Neurology (L.R., C.G.), Jena University Hospital; Neuroimmunological Section, Department of Neurology (N.R., U.Z.), University of Rostock; Department of Neurology (M.D., L.K.), University of Münster; Department of Neurology and Institute of Neuroimmunology and MS (K.Y., J.-P.S.), University Medical Center Hamburg-Eppendorf; Department of Neurology (M.K., P.K.), Nordwest-Hospital Sanderbusch, Sande; Department of Neurology (W.M.), Helios Hanseklinikum Stralsund; Department of Neurology (F.L., H.T.), University of Ulm, Germany; and Faculty of Medicine and Health Sciences (A.K.), Macquarie University, Sydney, New South Wales, Australia.

Published: January 2020

Objective: To investigate if patients with neuromyelitis optica spectrum disorder (NMOSD) develop subclinical visual pathway impairment independent of acute attacks.

Methods: A total of 548 longitudinally assessed full-field visual evoked potentials (VEP) of 167 patients with NMOSD from 16 centers were retrospectively evaluated for changes of P100 latencies and P100-N140 amplitudes. Rates of change in latencies (RCL) and amplitudes (RCA) over time were analyzed for each individual eye using linear regression and compared using generalized estimating equation models.

Results: The rates of change in the absence of optic neuritis (ON) for minimal VEP intervals of ≥3 months between baseline and last follow-up were +1.951 ms/y (n = 101 eyes; SD = 6.274; = 0.012) for the P100 latencies and -2.149 µV/y (n = 64 eyes; SD = 5.013; = 0.005) for the P100-N140 amplitudes. For minimal VEP intervals of ≥12 months, the RCL was +1.768 ms/y (n = 59 eyes; SD = 4.558; = 0.024) and the RCA was -0.527 µV/y (n = 44 eyes; SD = 2.123; = 0.111). The history of a previous ON >6 months before baseline VEP had no influence on RCL and RCA. ONs during the observational period led to mean RCL and RCA of +11.689 ms/y (n = 16 eyes; SD = 17.593; = 0.003) and -1.238 µV/y (n = 11 eyes; SD = 3.708; = 0.308), respectively.

Conclusion: This first longitudinal VEP study of patients with NMOSD provides evidence of progressive VEP latency delay occurring independently of acute ON. Prospective longitudinal studies are needed to corroborate these findings and help to interpret the clinical relevance.

Download full-text PDF

Source
http://dx.doi.org/10.1212/WNL.0000000000008684DOI Listing

Publication Analysis

Top Keywords

µv/y eyes
12
visual evoked
8
patients nmosd
8
p100 latencies
8
p100-n140 amplitudes
8
rates change
8
minimal vep
8
vep intervals
8
months baseline
8
ms/y eyes
8

Similar Publications

Purpose: This study aimed to identify a novel recombinant adeno-associated virus (rAAV) capsid variant that can widely transfect the deep retina through intravitreal injection and to assess their effectiveness and safety in gene delivery.

Methods: By adopting the sequences of various cell-penetrating peptides and inserting them into the capsid modification region of AAV2, we generated several novel variants. The green fluorescent protein (GFP)-carrying variants were screened following intravitreal injection.

View Article and Find Full Text PDF
Article Synopsis
  • - Age-related macular degeneration (AMD) is a major cause of vision loss in people over 55, and about 10%-15% of patients develop a severe form called wet AMD (wAMD), which leads to almost 90% of AMD-related blindness.
  • - The standard treatment for wAMD involves frequent injections to inhibit a protein called VEGF, creating a need for options that require less frequent administration.
  • - New findings show that a single injection of NG101, a gene therapy delivering aflibercept (an anti-VEGF agent), effectively reduces damage from wet AMD with lasting effects in animal studies, suggesting it could be an effective and convenient treatment alternative.
View Article and Find Full Text PDF

Purpose: Among the genome-editing methods for repairing disease-causing mutations resulting in autosomal dominant retinitis pigmentosa, homology-independent targeted integration (HITI)-mediated gene insertion of the normal form of the causative gene is useful because it allows the development of mutation-agnostic therapeutic products. In this study, we aimed for the rapid optimization and validation of HITI-treatment gene constructs of this approach in developing HITI-treatment constructs for various causative target genes in mouse models of retinal degeneration.

Methods: We constructed the Cas9-driven HITI gene cassettes in plasmid vectors to treat the mouse Rho gene.

View Article and Find Full Text PDF

VEGF-Virus Interactions: Pathogenic Mechanisms and Therapeutic Applications.

Cells

November 2024

Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Cantoblanco, 28049 Madrid, Spain.

Many types of viruses directly or indirectly target the vascular endothelial growth factor (VEGF) system, which is a central regulator of vasculogenesis and angiogenesis in physiological homeostasis, causing diverse pathologies. Other viruses have been developed into effective therapeutic tools for VEGF modulation in conditions such as cancer and eye diseases. Some viruses may alter the levels of VEGF in the pathogenesis of respiratory syndromes, or they may encode VEGF-like factors, promoting vascular disruption and angiogenesis to enable viruses' systemic spread.

View Article and Find Full Text PDF

CRISPR-based genome editing enables permanent suppression of angiogenic factors such as vascular endothelial growth factor (VEGF) as a potential treatment for choroidal neovascularization (CNV)-a major cause of blindness in age-related macular degeneration. We previously designed adeno-associated viral (AAV) vectors with S. pyogenes Cas 9 (SpCas9) and guide RNAs (gRNAs) to target conserved sequences in VEGFA across mouse, rhesus macaque, and human, with successful suppression of VEGF and laser-induced CNV in mice.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!