Nanoscopic modifications leading to multi-dimensional graphene structures are known to significantly influence their candidature for several applications including catalysis, energy storage, molecular sensing and most significantly adsorption and remediation of harmful materials such as dyes. The present work attempts to identify the key trajectories that connect the structural qualification with a chosen application, viz., the interactive forces in dye remediation. Various physico-chemically Modified Graphene Nanostructures (MGNs) such as 2 dimensional Graphite, Graphene Oxide (GO), reduced GO (rGO), holey rGO, and 3 dimensional GO hydrogel and Holey GO hydrogel are chosen and synthesised herein. These represent varieties of physicochemical features with respect to their dimensionality, surface features such as oxygen functionality, nanoscopic holes etc., that contribute to their characteristic overall surface interactions. Methylene Blue (MB), a popular industrial effluent posing major environmental concern is chosen to be a probe adsorbate in this case study. An exclusive real time in-situ UV visible spectral experiment provides the revealing reasons behind the outstanding performance of 2D GO sheets with an adsorption capacity of greater than 92 % even at high MB concentrations (>2000 ppm). A complex dependency of various factors such as surface oxygen, morphology, nanoporosity etc. on the unique overall interaction with an adsorbent such as MB by all these adsorbates is demonstrated using experimental and DFT based computational studies. Electrostatics and hydrogen bonding are understood to be the two dominant forces driving the MB adsorption on the best performing GO here.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jhazmat.2019.121755 | DOI Listing |
Microb Ecol
January 2025
State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, Guangdong, China.
The ecological niche separation of microbial interactions in forest ecosystems is critical to maintaining ecological balance and biodiversity and has yet to be comprehensively explored in microbial ecology. This study investigated the impacts of soil properties on microbial interactions and carbon metabolism potential in forest soils across 67 sites in China. Using redundancy analysis and random forest models, we identified soil pH and dissolved organic matter (DOM) aromaticity as the primary drivers of microbial interactions, representing abiotic conditions and resource niches, respectively.
View Article and Find Full Text PDFChem Asian J
January 2025
Fudan University, Department of Environmental Science and Engineering, Shanghai Handan Road 220, 200433, Shanghai, CHINA.
Novel Ce1-xMnxVO4 catalysts prepared via modified hydrothermal synthesis were used in selective catalytic reduction of NO using NH3 (NH3-SCR). The Ce1-xMnxVO4 catalysts displayed optimum NO removal efficiency at 250 oC. Physicochemical properties including crystal type, morphology, particle size, elemental composition, BET surface area, chemical bond, and valence state were studied by XRD, TEM, EDS, N2 adsorption-desorption, Raman spectroscopy, and XPS.
View Article and Find Full Text PDFSci Rep
January 2025
Chemistry Department, Faculty of Science, Tanta University, Tanta, 31527, Egypt.
Three composites based on Poly (meta-aminophenol) (PmAP), (3-aminopropyl) triethoxysilane (APTES) and graphene oxide (GO) were synthesized with initial GO dispersion of 3.3, 6.6, and 9.
View Article and Find Full Text PDFSci Rep
January 2025
Division of Dentistry, School of Medical Sciences, The University of Manchester, Manchester, M13 9PL, UK.
This study aims to evaluate the effects of the home bleaching method on the surface microhardness and surface roughness of both polished and unpolished CAD-CAM resin composite materials. A polymer-infiltrated ceramic network (PICN) block, Enamic (VE), along with four resin composite blocks (RCB) (Grandio [GN], Lava™ Ultimate [LV], BRILLIANT Crios [B], and Cerasmart [CS]), were prepared to dimensions of 14 mm × 12 mm × 2 mm and were categorized into unpolished and polished groups (n = 4). Microhardness measurements were conducted using a Vickers microhardness tester (300 gf load for 20 s) at various time points: before home bleaching, after home bleaching with 15% Opalescence for 8 h and for 56 h, 24 h after bleaching, and one month after bleaching.
View Article and Find Full Text PDFSci Rep
January 2025
National Institute of Oceanography and Fisheries (NIOF), Kayet Bey, Elanfoushy, Alexandria, Egypt.
This study aims to investigate a new approach to removing hazardous dyes like Direct Blue 86 (DB86) and Acid Yellow 36 (AY36) from aqueous environments. Delonix regia biochar-sulphur (DRB-S), made from Delonix regia seed pods (DPSPs), is an inexpensive and environmentally friendly adsorbent. Different characterization investigations using BJH, BET, FTIR, SEM, DSC, TGA, and EDX were utilized in the descriptions of the DRB-S biosorbent.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!