AI Article Synopsis

  • - Continuous online measurement of 99 volatile organic compounds (VOCs) in Beijing showed that although VOC pollution has decreased, levels are still higher compared to other Chinese cities, with total concentrations averaging 44.0 ± 28.9 ppbv.
  • - Major sources of VOC emissions include biomass burning, coal combustion, and vehicle emissions, with alkanes being the most prevalent among the sampled compounds; significant temporal variations were observed in their concentrations.
  • - The formation of ozone (O) in Beijing is highly influenced by VOC levels, particularly on days with heavy pollution, demonstrating that urban VOC sources and regional transport greatly affect air quality.

Article Abstract

Concentrations of 99 volatile organic compounds (VOCs) were continuously measured online at an urban site in Beijing, China, in January, April, July, and October 2016. Characterization and sources of VOCs and their related changes during days with heavy ozone (O) pollution were analysed. The total observed concentration of VOCs (TVOCs) was 44.0 ± 28.9 ppbv. The VOC pollution level has decreased in Beijing but remains higher than in other Chinese cities. Alkanes comprised the highest proportion among seven major sampled VOC groups. The concentrations and sources of ambient VOCs showed obvious temporal variations. Six emission sources were identified by the positive matrix factorization (PMF), including biomass burning, coal combustion, gasoline vehicles, diesel vehicles, solvent usage, and biogenic + secondary emissions. The combustion source was the key control factor for VOC reduction in Beijing. From the potential source contribution function (PSCF) and concentration-weighted trajectory (CWT) model, Beijing, Tianjin, Hebei, Shanxi, Inner Mongolia, Shandong, and Henan were identified as major potential source regions of ambient VOCs. O formation was sensitive to VOCs in Beijing according to the VOC/NOx ratio (ppbC/ppbv, 8:1 threshold). High- and low-O days in July were identified, and high O levels were due to both enhanced VOC emission levels and meteorological conditions favourable to the production of O. These findings provide evidence that the fuel combustion and regional transport have a great impact on concentrations and sources of VOCs in urban Beijing.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.envpol.2019.113599DOI Listing

Publication Analysis

Top Keywords

characterization sources
8
volatile organic
8
organic compounds
8
vocs
8
compounds vocs
8
vocs changes
8
ozone pollution
8
beijing china
8
sources vocs
8
concentrations sources
8

Similar Publications

Beyond the Herald Patch: Exploring the Complex Landscape of Pityriasis Rosea.

Am J Clin Dermatol

January 2025

Dr. Phillip Frost Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, FL, 33136, USA.

Pityriasis rosea (PR) is a prevalent dermatological condition characterized by a distinctive herald patch, followed by secondary eruptions, often forming a "Christmas tree" pattern on the trunk. Despite its recognizable clinical presentation, the etiology of PR remains uncertain, with hypotheses pointing to both infectious and noninfectious origins. Human herpesviruses (HHV) 6 and 7 have been implicated, with evidence suggesting viral reactivation as a potential trigger.

View Article and Find Full Text PDF

Nitrogen doped Carbon Quantum Dots (NCQDs) have been synthesized using most economical and easiest hydrothermal process. Here, N-phenyl orthophenylenediamine and citric acid were utilised as a source of nitrogen and carbon for the preparation of NCQDs. The synthesized NCQDs were characterized using experimental techniques like UV - Vis absorption, FT-IR, transmission electron microscopy (TEM), X-ray Diffraction (XRD), EDX, dynamic light scattering (DLS), fluorimeter and time resolved fluorescence spectroscopy.

View Article and Find Full Text PDF

Emerging techniques of additive manufacturing, such as vat-based three-dimensional (3D) bioprinting, offer novel routes to prepare personalized scaffolds of complex geometries. However, there is a need to develop bioinks suitable for clinical translation. This study explored the potential of bacterial-sourced methacrylate levan (LeMA) as a bioink for the digital light processing (DLP) 3D bioprinting of bone tissue scaffolds.

View Article and Find Full Text PDF

The long-term health of former athletes with a history of multiple concussions and/or repetitive head impact (RHI) exposure has been of growing interest among the public. The true proportion of dementia cases attributable to neurotrauma and the neurobehavioral profile/sequelae of multiple concussion and RHI exposure among athletes has been difficult to determine. Across three exposure paradigms (i.

View Article and Find Full Text PDF

Mitochondria play critical roles in regulating cell fate, with dysfunction correlating with the development of multiple diseases, emphasizing the need for engineered nanomedicines that cross biological barriers. Said nanomedicines often target fluctuating mitochondrial properties and/or present inefficient/insufficient cytosolic delivery (resulting in poor overall activity), while many require complex synthetic procedures involving targeting residues (hindering clinical translation). The synthesis/characterization of polypeptide-based cell penetrating diblock copolymers of poly-L-ornithine (PLO) and polyproline (PLP) (PLO-PLP, n:m ratio 1:3) are described as mitochondria-targeting nanocarriers.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!