Metabolomics reveals that tris(1,3-dichloro-2-propyl)phosphate (TDCPP) causes disruption of membrane lipids in microalga Scenedesmus obliquus.

Sci Total Environ

Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore; NUS Environmental Research Institute (NERI), #02-01, T-Lab Building (TL), 5A Engineering Drive 1, Singapore 117411, Singapore. Electronic address:

Published: March 2020

Tris(1,3-dichloro-2-propyl)phosphate (TDCPP) is one of the most widely used organophosphate ester flame retardants. The presence of TDCPP in surface waters and aquatic organisms have been reported worldwide, yet the ecological risk of TDCPP on microalgae is rarely studied. We investigated the biotransformation of TDCPP and its toxicity on the microalga Scenedesmus obliquus using an untargeted metabolomics approach. Exposure to TDCPP resulted in a dose-response decrease of micoalgal biomass. In the presence of microalgae, TDCPP concentration in the media decreased by 25.3-40.6% after 5 days. TDCPP metabolites were identified in the media including hydrolysis and hydroxyl-substituted dechlorination products. A dose-response separation of metabolic profiles of microalgae was observed, with effect seen at the lowest concentration of 10 µg/L tested, which is slightly higher than environmentally relevant concentrations. Differentiated metabolites identified include 52 lipids and 6 polar metabolites. Analysis of altered lipid pathways suggests that microalgal cells reinforce thylakoid membranes (function to protect photosynthesis) by compromising the integrity of plasma membrane (function to protect cellular substances) and extraplastidial cellular membranes. Changes in the polar metabolites might indicate osmotic stress and improved NO signaling after TDCPP exposure. Consistent with perturbation of membrane lipids, further experiment confirmed that exposure to 10 mg/L TDCPP resulted in significant (p < 0.01) plasma membrane damage. This study indicates biotransformation and the membrane damage toxicity mechanism of TDCPP on S. obliquus, demonstrating the usefulness of metabolomics for the toxicity mechanism elucidation of emerging pollutants.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.scitotenv.2019.134498DOI Listing

Publication Analysis

Top Keywords

tdcpp
10
tris13-dichloro-2-propylphosphate tdcpp
8
membrane lipids
8
microalga scenedesmus
8
scenedesmus obliquus
8
metabolites identified
8
polar metabolites
8
function protect
8
metabolomics reveals
4
reveals tris13-dichloro-2-propylphosphate
4

Similar Publications

Associations of prenatal organophosphate esters exposure with risk of eczema in early childhood, mediating role of gut microbiota.

J Hazard Mater

January 2025

Key Lab of Health Technology Assessment, National Health Commission of the People's Republic of China, Fudan University, Shanghai 200032, China; Key Laboratory of Public Health Safety, Ministry of Education, School of Public Health, Fudan University, Shanghai 200032, China. Electronic address:

Few epidemiological evidence has focused on the impact of organophosphate esters (OPEs) and the risk of eczema, and underlying role of gut microbiota. Based on the Shanghai Maternal-Child Pairs Cohort, a nested case-control study including 332 eczema cases and 332 controls was conducted. Umbilical cord blood and stools were collected for OPEs detection and gut microbiota sequencing, separately.

View Article and Find Full Text PDF

TDCPP promotes apoptosis and inhibits the calcium signaling pathway in human neural stem cells.

Sci Total Environ

January 2025

State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China. Electronic address:

Tris (1, 3-dichloro-2-propyl) phosphate (TDCPP) is an extensively used organophosphorus flame retardant (OFR). Previous studies have suggested that it has neurotoxic effects, but the neurotoxicity mechanism is still unclear. Neural stem cells are an important in vitro model for studying the neurotoxicity mechanism of pollutants.

View Article and Find Full Text PDF

Association of joint exposure to organophosphorus flame retardants and phthalate acid esters with gestational diabetes mellitus: a nested case-control study.

BMC Pregnancy Childbirth

November 2024

Guangxi Key Laboratory of Environmental Exposomics and Life-Course Health, Health Commission Key Laboratory of Life-Course Health and Care, School of Public Health, Guilin Medical University, 1 Zhiyuan Road, Guilin, 541199, Guangxi, Guangxi, China.

Background: Organic phosphate flame retardants (OPFRs) and phthalate acid esters (PAEs) are common endocrine-disrupting chemicals that cause metabolic disorders. This study aimed to assess the association between joint exposure to OPFRs and PAEs during early pregnancy in women with gestational diabetes mellitus (GDM).

Methods: Seven OPFRs and five PAEs were detected in the urine of 65 GDM patients and 100 controls using gas chromatography-tandem triple quadrupole mass spectrometry (GC-MS).

View Article and Find Full Text PDF

Effects of urinary organophosphate flame retardants in susceptibility to attention-deficit/hyperactivity disorder in school-age children.

Ecotoxicol Environ Saf

November 2024

Department of Laboratory Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan; Department of Medical Laboratory Sciences and Biotechnology, Fooyin University, Kaohsiung 83102, Taiwan. Electronic address:

Our previous studies have revealed a correlation between urinary phthalates (PAE) metabolites and parabens and PM exposure and susceptibility to attention-deficit/hyperactivity disorder (ADHD) in school-age children. Our goal was to examine the relationships between urinary organophosphate flame retardants (OPFRs) and their metabolites and the susceptibility to ADHD in the same cohort of children. We recruited 186 school children, including 132 with ADHD and 54 normal controls, living in southern Taiwan to investigate five OPFRs (1,3-dichloro-2-propyl phosphate (TDCPP), tri-n-butyl phosphate (TnBP), tris (2-chloroethyl) phosphate (TCEP), tris(2-butoxyethyl) phosphate (TBEP), and triphenyl phosphate (TPHP)) and five OPFR metabolites (bis(1,3-dichloro-2-propyl) phosphate (BDCPP), di-n-butyl phosphate (DNBP), bis(2-chloroethyl) hydrogen phosphate (BCEP), di-(2-butoxyethyl) phosphate (DBEP), and diphenyl phosphate (DPHP)) in urine.

View Article and Find Full Text PDF
Article Synopsis
  • Firefighters are exposed to harmful substances like polycyclic aromatic hydrocarbons (PAHs) and flame retardants (FRs) during fires, and this study used silicone wristbands (SWBs) to measure these exposures in various settings related to fire stations and firefighters.
  • The findings revealed that fire station areas generally had higher concentrations of low molecular weight PAHs and specific organophosphate flame retardants compared to office areas, with truck interiors showing particularly high levels.
  • Exposure to these harmful substances was lower when firefighters did not respond to fires, but significantly increased in conditions involving heavy smoke, indicating the influence of both work environments and fire conditions on exposure levels.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!