A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Oerskovia paurometabola can efficiently decolorize azo dye Acid Red 14 and remove its recalcitrant metabolite. | LitMetric

Oerskovia paurometabola can efficiently decolorize azo dye Acid Red 14 and remove its recalcitrant metabolite.

Ecotoxicol Environ Saf

iBB - Institute for Bioengineering and Biosciences, Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001, Lisboa, Portugal. Electronic address:

Published: March 2020

The biodegradation of dyes remains one of the biggest challenges of textile wastewater. Azo dyes are one of the most commonly employed dye classes, and biological treatment processes tend to generate recalcitrant aromatic amines, which are more toxic than the parent dye molecule. This study aimed to isolate bacterial strains with the capacity to degrade both the azo dye and the resulting aromatic amines towards the development of a simple and reliable treatment approach for dye-laden wastewaters. A mixed bacterial enrichment was first developed in an anaerobic-aerobic lab-scale sequencing batch reactor (SBR) fed with a synthetic textile wastewater containing the model textile azo dye Acid Red 14 (AR14). Eighteen bacterial strains were isolated from the SBR, including members of the Acinetobacter, Pseudomonas and Oerskovia genera, Oerskovia paurometabola presenting the highest decolorization capacity (91% after 24 h in static anaerobic culture). Growth assays supported that this is a facultative bacterium, and decolorization batch tests with 20-100 mg AR14 L in a synthetic textile wastewater supplemented with yeast extract indicated that O. paurometabola has a high color removal capacity for a significant range of AR14 concentrations. In addition, a model typically used to describe biodegradation of xenobiotic compounds was adjusted to the results, to predict AR14 biodegradation time profiles at different initial concentrations. HPLC analysis confirmed that decolorization occurred through azo bond reduction under anaerobic conditions, the azo dye being completely reduced after 24 h of anaerobic incubation for the range of concentrations tested. Interestingly, partial (up to 63%) removal of one of the resulting aromatic amines (4-amino-naphthalene-1-sulfonic acid) was observed when subsequently subjected to aerobic conditions. Overall, this work showed the azo dye biodegradation potential of specific bacterial strains isolated from mixed culture bioreactors, reporting for the first time the decolorization capacity of an Oerskovia sp. with further biodegradation of a recalcitrant sulfonated aromatic amine metabolite.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ecoenv.2019.110007DOI Listing

Publication Analysis

Top Keywords

azo dye
20
textile wastewater
12
aromatic amines
12
bacterial strains
12
oerskovia paurometabola
8
dye acid
8
acid red
8
synthetic textile
8
strains isolated
8
decolorization capacity
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!