Background: Cisplatin-based chemotherapy (CBCT) is part of standard treatment of several cancers. In testicular cancer (TC) survivors, an increased risk of developing metabolic syndrome (MetS) is observed. In this epigenome-wide association study, we investigated if CBCT relates to epigenetic changes (DNA methylation) and if epigenetic changes render individuals susceptible for developing MetS later in life. We analyzed methylation profiles, using the MethylationEPIC BeadChip, in samples collected ~ 16 years after treatment from 279 Norwegian TC survivors with known MetS status. Among the CBCT treated (n = 176) and non-treated (n = 103), 61 and 34 developed MetS, respectively. We used two linear regression models to identify if (i) CBCT results in epigenetic changes and (ii) epigenetic changes play a role in development of MetS. Then we investigated if these changes in (i) and (ii) links to genes, functional networks, and pathways related to MetS symptoms.

Results: We identified 35 sites that were differentially methylated when comparing CBCT treated and untreated TC survivors. The PTK6-RAS-MAPk pathway was significantly enriched with these sites and infers a gene network of 13 genes with CACNA1D (involved in insulin release) as a network hub. We found nominal MetS-associations and a functional gene network with ABCG1 and NCF2 as network hubs.

Conclusion: Our results suggest that CBCT has long-term effects on the epigenome. We could not directly link the CBCT effects to the risk of developing MetS. Nevertheless, since we identified differential methylation occurring in genes associated with conditions pertaining to MetS, we hypothesize that epigenomic changes may also play a role in the development of MetS in TC survivors. Further studies are needed to validate this hypothesis.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6892132PMC
http://dx.doi.org/10.1186/s13148-019-0764-4DOI Listing

Publication Analysis

Top Keywords

epigenetic changes
16
mets
9
testicular cancer
8
risk developing
8
developing mets
8
cbct treated
8
changes play
8
play role
8
role development
8
development mets
8

Similar Publications

Cancer is one of the leading causes of morbidity and mortality worldwide. One of the primary causes of cancer development and progression is epigenetic dysregulation, which is a heritable modification that alters gene expression without changing the DNA sequence. Therefore, targeting these epigenetic changes has emerged as a promising therapeutic strategy.

View Article and Find Full Text PDF

Histone demethylases in autophagy and inflammation.

Cell Commun Signal

January 2025

School of Basic Medical Sciences, Hubei University of Science and Technology, Hubei, 437000, China.

Autophagy dysfunction is associated with changes in autophagy-related genes. Various factors are connected to autophagy, and the mechanism regulating autophagy is highly complicated. Epigenetic changes, such as aberrant expression of histone demethylase, are actively associated not only with oncogenesis but also with inflammatory responses.

View Article and Find Full Text PDF

The roles of KRAS in cancer metabolism, tumor microenvironment and clinical therapy.

Mol Cancer

January 2025

RNA Oncology Group, School of Public Health, Lanzhou University, Lanzhou, 730000, People's Republic of China.

KRAS is one of the most mutated genes, driving alternations in metabolic pathways that include enhanced nutrient uptaking, increased glycolysis, elevated glutaminolysis, and heightened synthesis of fatty acids and nucleotides. However, the beyond mechanisms of KRAS-modulated cancer metabolisms remain incompletely understood. In this review, we aim to summarize current knowledge on KRAS-related metabolic alterations in cancer cells and explore the prevalence and significance of KRAS mutation in shaping the tumor microenvironment and influencing epigenetic modification via various molecular activities.

View Article and Find Full Text PDF

Somatic mutation as an explanation for epigenetic aging.

Nat Aging

January 2025

Program in Bioinformatics and Systems Biology, University of California, San Diego, La Jolla, CA, USA.

DNA methylation marks have recently been used to build models known as epigenetic clocks, which predict calendar age. As methylation of cytosine promotes C-to-T mutations, we hypothesized that the methylation changes observed with age should reflect the accrual of somatic mutations, and the two should yield analogous aging estimates. In an analysis of multimodal data from 9,331 human individuals, we found that CpG mutations indeed coincide with changes in methylation, not only at the mutated site but with pervasive remodeling of the methylome out to ±10 kilobases.

View Article and Find Full Text PDF

The root of asthma can be linked to early life, with prenatal environments influencing risk. We investigate the effects of maternal asthma on the offspring's lungs during fetal and adult life. Adult offspring of asthmatic mothers show an increase in lung group 2 innate lymphoid cell (ILC2) number and function with allergen-induced lung inflammation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!