Converging super-elliptic torsional shear waves in a bounded transverse isotropic viscoelastic material with nonhomogeneous outer boundary.

J Acoust Soc Am

Richard and Loan Hill Department of Bioengineering, University of Illinois at Chicago, 851 South Morgan Street, MC 063, Chicago, Illinois 60607, USA.

Published: November 2019

A theoretical approach was recently introduced [Guidetti and Royston, J. Acoust. Soc. Am. 144, 2312-2323 (2018)] for the radially converging slow shear wave pattern in transverse isotropic materials subjected to axisymmetric excitation normal to the axis of isotropy at the outer boundary of the material. This approach is enabled via transformation to an elliptic coordinate system with isotropic properties. The approach is extended to converging fast shear waves driven by axisymmetric torsional motion polarized in a plane containing the axis of isotropy. The approach involves transformation to a super-elliptic shape with isotropic properties and use of a numerically efficient boundary value approximation.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7043840PMC
http://dx.doi.org/10.1121/1.5134657DOI Listing

Publication Analysis

Top Keywords

shear waves
8
transverse isotropic
8
outer boundary
8
axis isotropy
8
isotropic properties
8
converging super-elliptic
4
super-elliptic torsional
4
torsional shear
4
waves bounded
4
bounded transverse
4

Similar Publications

Shear Wave Elastography (SWE) is an imaging technique that detects shear waves generated by tissue excited by Acoustic Radiation Force (ARF), and characterizes the mechanical properties of soft tissue by analyzing the propagation velocity of shear wave. ARF induces a change in energy density through the nonlinear propagation of ultrasound waves, which drives the tissue to generate shear waves. However, the amplitude of shear waves generated by ARF is weak, and the shear waves are strongly attenuated in vivo.

View Article and Find Full Text PDF

The eastern equatorial Atlantic hosts a productive marine ecosystem that depends on upward supply of nitrate, the primary limiting nutrient in this region. The annual productivity peak, indicated by elevated surface chlorophyll levels, occurs in the Northern Hemisphere summer, roughly coinciding with strengthened easterly winds. For enhanced productivity in the equatorial Atlantic, nitrate-rich water must rise into the turbulent layer above the Equatorial Undercurrent.

View Article and Find Full Text PDF

Underwater sound propagation over a layered seabed with weak shear rigiditya).

J Acoust Soc Am

January 2025

Department of Physics, Naval Postgraduate School, 833 Dyer Road, Monterey, California 93943-5216, USA.

The shear wave speed is often small compared to the compressional wave speed in the top part of the seabed, where acoustic normal modes penetrate. In sediments with weak but finite shear rigidity, the strongest conversion from compressional to shear waves occurs at interfaces within the sediment. Shear wave generation at such interfaces and interference within sediment layers lead to first-order perturbations in the normal mode phase speed and contributions to sound attenuation, which vary rapidly with frequency.

View Article and Find Full Text PDF

Objective: Although FibroScan (FS), based on Vibration-Controlled Transient Elastography (VCTE), is a widely used non-invasive device for assessing liver fibrosis and steatosis, its current standard-VCTE examination remains timely and difficult on patients with obesity. The Guided-VCTE examination uses continuous shear waves to locate the liver by providing a real-time predictive indicator for shear wave propagation and uses shear wave maps averaging to increase the signal-to-noise ratio in difficult to assess patients. We aimed to evaluate the effectiveness of the new indicator, as well as compare examination times and success rates with both standard-VCTE and Guided-VCTE examinations.

View Article and Find Full Text PDF

There is very limited research in the literature investigating the way acoustic emission signals change when polymer materials are undergoing different fracture modes. This study investigates the capability of acoustic emission to recognize the fracture mode through acoustic emission parameter analysis, and can be considered the first-ever study which examines the impact of different loading conditions, i.e.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!