High-Risk Pulmonary Embolism: Current Evidence-Based Practices.

R I Med J (2013)

Department of Medicine and Division of Pulmonary, Critical Care and Sleep Medicine, Alpert Medical School of Brown University.

Published: December 2019

Acute pulmonary embolism (PE) causes significant morbidity and mortality, particularly for patients with subsequent right ventricular (RV) dysfunction. Once diagnosed, risk stratification is imperative for therapeutic decision making and centers on evaluation of RV function. Treatment includes supportive care, systemic anticoagulation, and consideration of reperfusion therapy. In addition to systemic anticoagulation, patients with high-risk PE should receive reperfusion therapy, typically with systemic thrombolysis. The role of reperfusion therapies, which include catheter-based interventions, systemic thrombolysis, and surgical embolectomy, are controversial in the management of intermediate risk PE. Catheter directed thrombolysis (CDT) can be considered in certain intermediate risk patients although prospective, comparative data for its use are lacking. Surgical or catheter embolectomy are viable treatment options for high-risk patients in whom reperfusion therapy is warranted but who have absolute contraindications to thrombolysis. Further research is needed to better elucidate which patients with PE would most benefit from advanced reperfusion therapies.

Download full-text PDF

Source

Publication Analysis

Top Keywords

reperfusion therapy
12
pulmonary embolism
8
systemic anticoagulation
8
systemic thrombolysis
8
reperfusion therapies
8
intermediate risk
8
patients
5
reperfusion
5
high-risk pulmonary
4
embolism current
4

Similar Publications

Melatonin (MEL), functioning as a circulating hormone, is important for the regulation of ferroptosis in different health scenarios and acts as a crucial antioxidant in cardiovascular diseases. However, its specific function in ferroptosis related to myocardial ischemia-reperfusion injury (MIRI) remains to be fully elucidated. In our research, we utilized a rat model of MIRI induced by coronary artery ligation, along with a cell model subjected to hypoxia/reoxygenation (H/R).

View Article and Find Full Text PDF

Prussian Blue Nanozyme Featuring Enhanced Superoxide Dismutase-like Activity for Myocardial Ischemia Reperfusion Injury Treatment.

ACS Nano

January 2025

Jiangsu Key Laboratory for Biomaterials and Devices, School of Biomedical Sciences and Medical Engineering, Southeast University, Nanjing 210096, P. R. China.

The blood flow, when restored clinically following a myocardial infarction (MI), disrupts the physiological and metabolic equilibrium of the ischemic myocardial area, resulting in secondary damage termed myocardial ischemia-reperfusion injury (MIRI). Reactive oxygen species (ROS) generation and inflammatory reactions stand as primary culprits behind MIRI. Current strategies focusing on ROS-scavenging and anti-inflammatory actions have limited remission of MIRI.

View Article and Find Full Text PDF

Purpose: Intestinal ischemia-reperfusion injury (IIRI) occurs as a result of temporary blood flow interruption, leading to tissue damage upon reperfusion. Oxidative stress plays a critical role in this process, instigating inflammation and cell death. Identifying and characterizing genes associated with the oxidative stress response can offer valuable insights into potential therapeutic targets for managing IIRI.

View Article and Find Full Text PDF

Purpose: To report a case of a diabetic patient undergoing rapid glycemic improvement characterized by the development and resolution of cotton wool spot (CWS), with detailed structural and vascular assessment using wide-field multimodal imaging, including wide-field color fundus photography and wide-field optical coherence tomography angiography (OCTA).

Observations: A 47-year-old man with poorly controlled Type 2 diabetes mellitus developed CWS in his right eye 3 months after initiating insulin therapy, which coincided with a significant reduction in HbA1c levels. Wide-field color fundus photography and wide-field OCTA were performed before, during, and after CWS appeared.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!