Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
In addition to perinuclear theca anchored glutathione-s-transferase omega 2 (GSTO2), whose function is to participate in sperm nuclear decondensation during fertilization (Biol Reprod. 2019, 101:368-376), we herein provide evidence that GSTO2 is acquired on the sperm plasmalemma during epididymal maturation. This novel membrane localization was reinforced by the isolation and identification of biotin-conjugated surface proteins from ejaculated and capacitated boar and mouse spermatozoa, prompting us to hypothesize that GSTO2 has an oxidative/reductive role in regulating sperm function during capacitation. Utilizing an inhibitor specific to the active site of GSTO2 in spermatozoa, inhibition of this enzyme led to a decrease in tyrosine phosphorylation late in the capacitation process, followed by an expected decrease in acrosome exocytosis and motility. These changes were accompanied by an increase in reactive oxygen species (ROS) levels and membrane lipid peroxidation and culminated in a significant decrease in the percentage of oocytes successfully penetrated by sperm during in vitro fertilization. We conclude that GSTO2 participates in the regulation of sperm function during capacitation, most likely through protection against oxidative stress on the sperm surface.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6943649 | PMC |
http://dx.doi.org/10.3390/antiox8120601 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!