Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
This study assesses the volatility of 15 elements (As, Bi, C, Cd, Cl, Cu, K, Mn, Na, P, Pb, S, Sb, Sn, and Zn) during thermal processing of fly ashes obtained from four waste-to-energy plants and one wood-combustion plant. Differences in volatility in oxidising and reducing atmospheres (air and 10% H/90% N) were assessed at two temperatures, 700 and 1000 °C. P and Mn were predominately retained in all ashes regardless of the operating atmosphere and temperature. Other elements showed significant variation in volatility depending on the type of fly ash, atmosphere, and temperature. Heat-treatment of the wood-combustion fly ash in the air atmosphere resulted in low release of K, Na, and all investigated heavy metals and metalloids. Several valuable elements, including Zn, Sb, Sn, and Bi, were significantly more volatile in the reducing atmosphere than in the oxidising atmosphere, particularly at 1000 °C. Other elements were either less volatile, equally volatile, or only marginally more volatile when the ashes were heated at 1000 °C in the reducing atmosphere. These elements include C, Cl, Cu, and, in the case of fly ashes derived from municipal solid waste, Cd and Pb. A two-step process, in which municipal solid waste incineration fly ash is first heated in an oxidising atmosphere and then in a reducing atmosphere, is proposed for production of a chloride-free zinc concentrate. Evaluation of the two-step process at 880 °C shows good potential for selective volatilisation of Zn with other valuable elements, including Sn, Sb, and Bi.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.wasman.2019.11.025 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!