Impaired face-like object recognition in premanifest Huntington's disease.

Cortex

Movement Disorders Unit, Neurology Department, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain; Biomedical Research Institute (IIB-Sant Pau), Barcelona, Spain; Centro de Investigación en Red-Enfermedades Neurodegenerativas (CIBERNED), Spain; Department of Medicine, Autonomous University of Barcelona, Spain; European Huntington's Disease Network (EHDN), Germany. Electronic address:

Published: February 2020

Progressive striatal atrophy has long been considered the pathological hallmark of Huntington's disease (HD), but is it now recognized that malfunction and degeneration of posterior-cortical territories are also prominent characteristics of the disease. The limited knowledge about the functional impact of these posterior-cortical changes could be partially attributed to the lack of sensitive measures to capture them. We hypothesized that early malfunction of specific territories of the ventral visual pathway in premanifest HD would lead to difficulties in the recognition of complex stimuli and to differences in their neurophysiological correlates. To test this idea, we used an object, face and face-like object recognition task to be conducted during an electroencephalographic recording. Compared to healthy-matched controls, premanifest participants showed a significantly increased number of recognition errors in the face-like object condition. Moreover, premanifest participants showed a dramatic decrease in the N170 component elicited for the face-like objects. This N170 decrease was significantly associated with the number of recognition errors and with severity of apathy and global cognitive performance. The lack of differences in other clinical and cognitive measures supports a selective deficit in recognition of face-like objects and their neurophysiological correlates in premanifest HD. These deficits occurred in participants up to 15 years before the estimated time to disease onset and correlated strongly with cognitive and behavioral measures known to be sensitive to HD progression. This finding highlights the existence of selective visuoperceptive deficits years before motor-based onset of HD and emphasizes the need to develop sensitive measures to capture early visual system changes in this population. Assessing the integrity of the visual cortex and its related functions in HD could help to identify early markers of disease progression.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.cortex.2019.10.015DOI Listing

Publication Analysis

Top Keywords

face-like object
12
object recognition
8
huntington's disease
8
sensitive measures
8
measures capture
8
neurophysiological correlates
8
premanifest participants
8
number recognition
8
recognition errors
8
face-like objects
8

Similar Publications

The human visual system possesses a remarkable ability to detect and process faces across diverse contexts, including the phenomenon of face pareidolia--seeing faces in inanimate objects. Despite extensive research, it remains unclear why the visual system employs such broadly tuned face detection capabilities. We hypothesized that face pareidolia results from the visual system's optimization for recognizing both faces and objects.

View Article and Find Full Text PDF

Face pareidolia minimally engages macaque face selective neurons.

Prog Neurobiol

January 2025

Section on Cognitive Neurophysiology and Imaging, Systems Neurodevelopment Laboratory, National Institute of Mental Health, Bethesda, MD, USA; Neurophysiology Imaging Facility, National Institute of Mental Health, National Institute of Neurological Disorders and Stroke, National Eye Institute, Bethesda, MD, USA. Electronic address:

The macaque cerebral cortex contains concentrations of neurons that prefer faces over inanimate objects. Although these so-called face patches are thought to be specialized for the analysis of facial signals, their exact tuning properties remain unclear. For example, what happens when an object by chance resembles a face? Everyday objects can sometimes, through the accidental positioning of their internal components, appear as faces.

View Article and Find Full Text PDF

Differential late-stage face processing in autism: a magnetoencephalographic study of fusiform gyrus activation.

BMC Psychiatry

December 2024

Gillberg Neuropsychiatry Centre, Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.

Background: Autism is associated with alterations of social communication, such as during face-to-face interactions. This study aimed to probe face processing in autistics with normal IQ utilizing magnetoencephalography to examine event-related fields within the fusiform gyrus during face perception.

Methods: A case-control cohort of 22 individuals diagnosed with autism and 20 age-matched controls (all male, age 29.

View Article and Find Full Text PDF

Humans perceive illusory faces in everyday objects with a face-like configuration, an illusion known as face pareidolia. Face-selective regions in humans and monkeys, believed to underlie face perception, have been shown to respond to face pareidolia images. Here, we investigated whether pareidolia selectivity in macaque inferotemporal cortex is explained by the face-like configuration that drives the human perception of illusory faces.

View Article and Find Full Text PDF

Previous studies have elucidated that humans can implicitly process faces faster than they process objects. However, the mechanism through which the brain unconsciously processes ambiguous facial images remains unclear. In our experiment, upright and inverted black-and-white binary face stimuli were presented in a two-alternative forced-choice location discrimination task combined with continuous flash suppression, a technique that suppresses visual stimuli perception using rapidly changing masks.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!