Urinary tract infections (UTIs) represent a major burden across the population, although key facets of their pathophysiology and host interaction remain unclear. Escherichia coli epitomizes these obstacles: this gram-negative bacterial species is the most prevalent agent of UTIs worldwide and can also colonize the urogenital tract in a phenomenon known as asymptomatic bacteriuria (ASB). Unfortunately, at the level of the individual E. coli strains, the relationship between UTI and ASB is poorly defined, confounding our understanding of microbial pathogenesis and strategies for clinical management. Unlike diarrheagenic pathotypes of E. coli, the definition of uropathogenic E. coli (UPEC) remains phenomenologic, without conserved phenotypes and known genetic determinants that rigorously distinguish UTI- and ASB-associated strains. This article provides a cross-disciplinary review of the current issues from interrelated mechanistic and diagnostic perspectives and describes new opportunities by which clinical resources can be leveraged to overcome molecular challenges. Specifically, we present our work harnessing a large collection of patient-derived isolates to identify features that do (and do not) distinguish UTI- from ASB-associated E. coli strains. Analyses of biofilm formation, previously reported to be higher in ASB strains, revealed extensive phenotypic heterogeneity that did not correlate with symptomatology. However, metabolomic experiments revealed distinct signatures between ASB and cystitis isolates, including in the purine pathway (previously shown to be critical for intracellular survival during acute infection). Together, these studies demonstrate how large-scale, wild-type approaches can help dissect the physiology of colonization versus infection, suggesting that the molecular definition of UPEC may rest at the level of global bacterial metabolism.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7293133PMC
http://dx.doi.org/10.1016/j.jmb.2019.11.008DOI Listing

Publication Analysis

Top Keywords

escherichia coli
8
e coli strains
8
distinguish uti-
8
uti- asb-associated
8
defining molecular
4
molecular signature
4
signature uropathogenic
4
uropathogenic versus
4
versus urocolonizing
4
urocolonizing escherichia
4

Similar Publications

Study of the interaction between alkaline phosphatase and biomacromolecule substrates.

Anal Bioanal Chem

January 2025

Gene Engineering and Biotechnology of Beijing Key Laboratory, College of Life Sciences, Beijing Normal University, Beijing, 100875, China.

Alkaline phosphatase (ALP) is a nonspecific phosphatase, and its interaction with substrates mainly depends on the recognition of phosphate groups on the substrate. Previous enzymatic research has focused mainly on the enzymatic reaction kinetics of the inorganic small molecule p-nitrophenol phosphate (pNPP) as a substrate, but its interaction with biomacromolecule substrates has not been reported. In current scientific research, ALP is often used for molecular cloning, such as removing the 5' termini of nucleic acids.

View Article and Find Full Text PDF

Recent genome mining work revealed that unexplored habitats exhibit great potential for discovering new nonribosomal peptides (NRPs) and ribosomally synthesized and post-translationally modified peptides (RiPPs). Lanthipeptides are a group of RiPPs exhibiting a variety of biological functions. They are characterized by the presence of the thioether-containing bis-amino acids lanthionine and/or methyllanthionine.

View Article and Find Full Text PDF

Aims: To characterize Escherichia coli O25 ST131 (O25-ST131) isolated from Georgia poultry, - a "global high-risk" clonal strain.

Methods And Results: Using multiplex PCR to detect target genes in 98 isolates of avian pathogenic E. coli (APEC) O25 recovered from avians diagnosed with colibacillosis (n=87) and healthy chicks (n=11) in Georgia, USA.

View Article and Find Full Text PDF

In this study designed to isolate lactic acid bacteria (LAB) with bacteriocin production potential, white cheese samples were collected from different provinces of Turkey and isolation was carried out. A series of experiments were carried out for the main purpose and the actual bacteriocin producers were identified by detecting the genes encoding this bacteriocin. The experiments carried out in this direction were initially carried out with 20 isolates and as a result of various experiments, the number of isolates was reduced to 8 and the study was continued with 8 isolates.

View Article and Find Full Text PDF

Soluble starch/zinc oxide nanocomposites could be promising candidates for eco-friendly antimicrobial, food packaging, and a wide range of other utilization. In order to find a new way for the preparation of this kind of nanocomposites, an efficient and energy-saving reaction for the synthesis of soluble starch/zinc oxide nanocomposites has been investigated. The reaction was implemented in a solid state at room temperature without post-reaction calcination.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!