Blood volume in dried blood spot (DBS) analysis is assumed to be constant for DBS punches with a fixed area. However, blood volume in the punch is dependent on several factors associated with the blood composition and is preferentially normalized by off-line analysis for quantitative purposes. Instead of using external instrumentation, we present an all-in-one approach for the simultaneous determination of exact blood volume in the DBS punch and the quantitation of target analytes. A DBS is eluted with 500 μL of elution solvent in a sample vial, and the eluate is directly subjected to an automated analysis by capillary electrophoresis with capacitively coupled contactless conductivity detection (CE-CD). The capillary blood volume in the eluate is calculated from the concentrations of the inorganic blood constituents (K, Na, or Cl) determined by CE-CD, which are linearly proportional to the blood volume originally sampled onto the DBS card. Alternatively, conductivity of the DBS eluate can be used for the blood volume determination by using CD in a nonseparation flow-through mode. The methods are suitable for the determination of blood volume in unknown DBS samples by punching out the entire DBS or by subpunching a small section of a large DBS with variations of the true vs the determined volume ≤5.5%. Practical suitability was demonstrated by the simultaneous CE-CD determination of K and Na (for DBS volume calculation) and amino acids (target analytes) in unknown DBS samples. Quantitative analysis of selected amino acids (related to inborn metabolic disorders) in the unknown DBS was compared with a standard analytical procedure using wet-blood chemistry, and an excellent fit was obtained. The use of CE-CD represents an important milestone in quantitative DBS analysis since the detection technique is universal, and the separation technique enables the determination of cations and/or anions and the use of multiple detectors, which further enhance selectivity/sensitivity of the analysis and the range of detectable analytes.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.analchem.9b04845DOI Listing

Publication Analysis

Top Keywords

blood volume
32
dbs
13
blood
12
unknown dbs
12
volume
10
capillary electrophoresis
8
electrophoresis capacitively
8
capacitively coupled
8
coupled contactless
8
contactless conductivity
8

Similar Publications

Iliosacral screw osteosynthesis - state of the art.

Arch Orthop Trauma Surg

January 2025

Department of Orthopedics and Traumatology, University Medical Center Mainz, Mainz, Germany.

Iliosacral screw osteosynthesis is a widely recognized technique for stabilizing unstable posterior pelvic ring injuries, offering notable advantages, including enhanced mechanical stability, minimal invasiveness, reduced blood loss, and lower infection rates. However, the procedure presents technical challenges due to the complex anatomy of the sacrum and the proximity of critical neurovascular structures. While conventional fluoroscopy remains the primary method for intraoperative guidance, precise preoperative planning using multiplanar reconstructions and three-dimensional volume rendering is crucial for ensuring accurate placement of iliosacral or transsacral screws.

View Article and Find Full Text PDF

Detecting Hemorrhagic Myocardial Infarction With 3.0-T CMR: Insights Into Spatial Manifestation, Time-Dependence, and Optimal Acquisitions.

JACC Cardiovasc Imaging

January 2025

Department of Radiology and Imaging Sciences and Krannert Cardiovascular Research Center, Indiana University School of Medicine, Indianapolis, Indiana, USA. Electronic address:

Background: Hemorrhagic myocardial infarction (hMI) can rapidly diminish the benefits of reperfusion therapy and direct the heart toward chronic heart failure. T2∗ cardiac magnetic resonance (CMR) is the reference standard for detecting hMI. However, the lack of clarity around the earliest time point for detection, time-dependent changes in hemorrhage volume, and the optimal methods for detection can limit the development of strategies to manage hMI.

View Article and Find Full Text PDF

Variations in Revascularization Strategies for Chronic Limb-Threatening Ischemia: A Nationwide Analysis of Medicare Beneficiaries.

JACC Cardiovasc Interv

December 2024

Richard A. and Susan F. Smith Center for Outcomes Research in Cardiology, Department of Medicine, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA; Division of Cardiology, Department of Medicine, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA; Harvard Medical School, Boston, Massachusetts, USA. Electronic address:

Background: Recent data support both surgical-first and endovascular-first revascularization approaches for chronic limb-threatening ischemia (CLTI), but hospital-based practices are poorly described.

Objectives: This aim of this study was to characterize contemporary variations and outcomes associated with each strategy among U.S.

View Article and Find Full Text PDF

Non-communicable diseases (NCD) are associated with inflammation and oxidative stress which is further associated with omega-6 (ω6) and omega-3 (ω3) fatty acid (FA) imbalance favoring ω6 FA. By improving ω3 FA consumption, this imbalance can be altered to control NCD. Previously we have reported blends of flaxseed oil (FSO, ω3 FA) with palm olein (PO) or coconut oil (CO) were thermo-oxidatively stable with good storage stability and could improve ω6:ω3 ratio in cell lines.

View Article and Find Full Text PDF

Aim: This study aimed to explore the possible bidirectional interrelations between fructose-induced metabolic syndrome (MS) and apical periodontitis (AP).

Methodology: Twenty-eight male Wistar rats were distributed into four groups (n = 7, per group): Control (C), AP, Fructose Consumption (FRUT) and Fructose Consumption and AP (FRUT+AP). The rats in groups C and AP received filtered water, while those in groups FRUT and FRUT+AP received a 20% fructose solution mixed with water to induce MS.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!