Selecting appropriate reference genes is vital to normalize gene expression analysis in birch (Betula platyphylla) under different abiotic stress conditions using quantitative real-time reverse transcription PCR (qRT-PCR). In this study, 11 candidate birch reference genes (ACT, TUA, TUB, TEF, 18S rRNA, EF1α, GAPDH, UBC, YLS8, SAND, and CDPK) were selected to evaluate the stability of their expression in different tissues and under different abiotic stress conditions. Three statistical algorithms (GeNorm, NormFinder, and BestKeeper) were used to analyze the stability of the 11 candidate reference genes to identify the most appropriate one. The results indicated that EF-1α was the most stable reference gene in different birch tissues, ACT was the most stable reference gene for normal conditions, ACT and TEF were the most stable reference genes for salt stress treatment, TUB was the most stable reference gene for osmotic stress treatment, and ACT was the most appropriate choice in all samples of birch. In conclusion, the most appropriate reference genes varied among different experimental conditions. However, in this study, ACT was the optimum reference gene in all experimental groups, except in the different tissues group. GAPDH was the least stable candidate reference gene in all experimental conditions. In addition, three stress-induced genes (BpGRAS1, BpGRAS16, and BpGRAS19) were chosen to verify the stability of the selected reference genes in different tissues and under salt stress. This study laid the foundation for the selection of appropriate reference gene(s) for future gene expression pattern studies in birch.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6890252PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0225926PLOS

Publication Analysis

Top Keywords

reference genes
32
reference gene
20
appropriate reference
16
stable reference
16
reference
13
stress conditions
12
genes
9
selection appropriate
8
quantitative real-time
8
real-time reverse
8

Similar Publications

Chapter 5: THE ROLE OF GENETICS IN PRIMARY HYPERPARATHYROIDISM.

Ann Endocrinol (Paris)

January 2025

Univ. Lille, Inserm, CHU Lille, U1286 - Infinite, F-59045 Lille Cedex, Department of Biochemistry and Molecular Biology, Lille University Hospital, Lille, France. Electronic address:

Around 10% of cases of primary hyperparathyroidism are thought to be genetic in origin, some of which are part of a syndromic form such as multiple endocrine neoplasia types 1, 2A or 4 or hyperparathyroidism-jaw tumor syndrome, while the remainder are cases of isolated familial primary hyperparathyroidism. Recognition of these genetic forms is important to ensure appropriate management according to the gene and type of variant involved, but screening for a genetic cause is not justified in all patients presenting primary hyperparathyroidism. The indications for genetic analysis have made it possible to propose a decision tree that takes into account whether the presentation is familial or sporadic, syndromic or isolated, patient age, and histopathological type of parathyroid lesion.

View Article and Find Full Text PDF

Thymol inhibits ergosterol biosynthesis in Nakaseomyces glabratus, but differently from azole antifungals.

J Mycol Med

December 2024

Invasive Fungi Research Center, Communicable Diseases Institute, Mazandaran University of Medical Sciences, Sari, Iran; Department of Medical Mycology, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran. Electronic address:

Introduction: Nakaseomyces glabratus is considered a high priority of attention according to WHO, and also is an important yeast species due to its high rate of intrinsic/acquired resistance against fluconazole. This study aimed at the possible mechanisms of action of thymol, as the promising new antifungal agent, in N. glabratus.

View Article and Find Full Text PDF

Protocol for extracellular vesicle secretion-related gene screening via ExoScreen technique.

STAR Protoc

January 2025

Department of Molecular and Cellular Medicine, Institute of Medical Science, Tokyo Medical University, Tokyo, Japan. Electronic address:

Extracellular vesicles (EVs) play a key role in cancer development and cellular homeostasis by transferring the biological cargo to recipient cells. Here, we describe steps for screening EV secretion-related genes by combining a microRNA (miRNA) library and ExoScreen, a highly sensitive EV detection technique. We also detail procedures for screening the direct target genes regulated by miRNAs.

View Article and Find Full Text PDF

Background: Epidemiological surveys indicate an increasing incidence of type 2 diabetes mellitus (T2DM) among children and adolescents worldwide. Due to rapid disease progression, severe long-term cardiorenal complications, a lack of effective treatment strategies, and substantial socioeconomic burdens, it has become an urgent public health issue that requires management and resolution. Adolescent T2DM differs from adult T2DM.

View Article and Find Full Text PDF

Recent advances in molecular science have significantly enlightened our mechanistic understanding of spinocerebellar ataxia type 7. To further close remaining gaps, we performed a multi-omics analysis using SCA7 mice. Entire brain tissue samples were collected from 12-week-old mice, and RNA sequencing, methylation analysis, and proteomic analysis were performed.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!