The effect of pH and ionic strength on the fluorescence properties of a red emissive DNA-stabilized silver nanocluster.

Methods Appl Fluoresc

Department of Chemistry, Biology and Biotechnology, Perugia University, Via Elce di sotto, 8, 06123 Perugia, Italy.

Published: December 2019

AI Article Synopsis

  • DNA-stabilized silver nanoclusters (DNA-AgNCs) are gaining attention for their potential in imaging and sensing applications, but their full spectroscopic properties are still under investigation.
  • This study focused on the spectroscopic characteristics of red-emitting DNA-AgNCs across different pH levels (5 to 9) and ionic strengths (0.005 to 0.5), finding that purified samples maintained consistent photophysical properties apart from extreme conditions.
  • The research also revealed that while non-purified DNA-AgNCs showed no significant changes with varying pH or ionic strength, there were notable differences in their rotational correlation times compared to purified samples.

Article Abstract

DNA-stabilized silver nanoclusters (DNA-AgNCs) are a class of promising fluorophores for imaging and sensing applications. All aspects of their spectroscopic properties are not yet fully characterized, leaving this field still with a number of fundamental studies to be addressed. In this work, we studied the spectroscopic properties of red-emitting DNA-AgNCs at different pH (5 to 9) and ionic strength μ (0.005 to 0.5). The photophysical properties of high performance liquid chromatography (HPLC) purified DNA-AgNCs proved to be constant over a large range of pH and μ, with absorption, emission and fluorescence decay times only being affected at very high pH and μ values. Non-purified DNA-AgNCs were also unaffected by pH and/or μ variations, but significant differences can be observed between the rotational correlation times of purified and non-purified DNA-AgNCs.

Download full-text PDF

Source
http://dx.doi.org/10.1088/2050-6120/ab47f2DOI Listing

Publication Analysis

Top Keywords

ionic strength
8
dna-stabilized silver
8
spectroscopic properties
8
non-purified dna-agncs
8
dna-agncs
5
strength fluorescence
4
properties
4
fluorescence properties
4
properties red
4
red emissive
4

Similar Publications

Formation of Highly Negatively Charged Supported Lipid Bilayers on a Silica Surface: Effects of Ionic Strength and Osmotic Stress.

Langmuir

January 2025

Key Laboratory of Applied Surface and Colloid Chemistry (Ministry of Education), Institute of New Concept Sensors and Molecular Materials, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710062, China.

Solid supported lipid bilayers (SLBs) serve as an excellent platform for biophysical studies. However, the formation of highly negatively charged SLBs on negatively charged surfaces remains a challenge due to electrostatic repulsion. Here, we study the effects of ionic strength and osmotic stress on the formation of highly negatively charged SLBs on the silica surface.

View Article and Find Full Text PDF

In the current work, three adsorbent materials were developed: biochar derived from date palm fiber (C), date palm fiber biochar/chitosan nanoparticles (CCS), and biochar/chitosan nanoparticle composite supplemented with glutamine (CCSG). These compounds were used as solid adsorbents to remove As from polluted water. Several characterization approaches were used to investigate all the synthesized solid adsorbents, including thermogravimetric analysis, N adsorption/desorption isotherm, scanning electron microscopy, transmission electron microscopy (TEM), attenuated total reflectance with Fourier transform infrared, and zeta potential.

View Article and Find Full Text PDF

The increasing trend of salinization of agricultural lands represents a great threat to the growth of major crops. Hence, shedding light on the salt-tolerance capabilities of three environment-resilient medicinal species from the Apiaceae, i.e.

View Article and Find Full Text PDF

Background: Infections from the hepatitis B virus (HBV) are a major risk factor for hepatocellular carcinoma, one of the most common types of liver cancer. Circulating cell-free DNA (ccfDNA) in human plasma can be used as a non-invasive biomarker for diagnosing HBV-related liver diseases. The isolation of target ccfDNA sequences is often challenging due to the co-extraction of highly abundant non-target DNA from samples.

View Article and Find Full Text PDF

In this study, the interactions between three quaternary ammonium salt (QAS) cationic surfactants with different branched-chain lengths (TMBAC, TEBAC, and TBBAC) and DNA are investigated by UV-vis absorption, fluorescence and CD spectroscopy, viscosity method, and gel electrophoresis. Berberine hydrochloride (BR) is utilized as a fluorescent probe. The three interaction modes and strengths are compared.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!