A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Oscillatory Viscoelastic Microfluidics for Efficient Focusing and Separation of Nanoscale Species. | LitMetric

The ability to precisely control particle migration within microfluidic systems is essential for focusing, separating, counting, and detecting a wide range of biological species. To date, viscoelastic microfluidic systems have primarily been applied to the focusing, separation, and isolation of micrometer-sized species, with their use in nanoparticle manipulations being underdeveloped and underexplored, due to issues related to nanoparticle diffusivity and a need for extended channel lengths. To overcome such issues, we herein present sheathless oscillatory viscoelastic microfluidics as a method for focusing and separating both micrometer and sub-micrometer species. To highlight the efficacy of our approach, we segment our study into three size regimes, namely, micrometer (where characteristic particle dimensions are above 1 μm), sub-micrometer (where characteristic dimensions are between 1 μm and 100 nm), and nano (where characteristic dimensions are below 100 nm) regimes. Based on the ability to successfully manipulate particles in all these regimes, we demonstrate the successful isolation of p-bodies from biofluids (in the micrometer regime), the focusing of λ-DNA (in the sub-micrometer regime), and the focusing of extracellular vesicles (in the nanoregime). Finally, we characterize the physics underlying viscoelastic microflows using a dimensionless number that relates the lateral velocity (due to elastic effects) to the diffusion constant of the species within the viscoelastic carrier fluid. Based on the ability to precisely manipulate species in all three regimes, we expect that sheathless oscillatory viscoelastic microfluidics may be used to good effect in a range of biological and life science applications.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsnano.9b06123DOI Listing

Publication Analysis

Top Keywords

oscillatory viscoelastic
12
viscoelastic microfluidics
12
focusing separation
8
ability precisely
8
microfluidic systems
8
focusing separating
8
range biological
8
species viscoelastic
8
sheathless oscillatory
8
dimensions μm
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!