We designed a novel luminescent metal-organic framework (MOF) named Ce-TCPP-LMOF (CTM) through a simple one-pot solvothermal method. CTM was synthesized by using the emerging electrochemiluminescent (ECL) material (4,4',4″,4‴-(porphine-5,10,15,20-tetrayl)tetrakis(benzoic acid) as the organic ligand and Ce(III) as the metal node. We found that CTM not only has the remarkable ability to emit light but also has a uniform "sandwich biscuit" shape and suitable nanoscale size, which are promising for further applications. We also applied CTM to construct a novel ECL immunosensor and achieve sensitive detection of the proprotein convertase subtilisin/kexin type 9 (PCSK9), a biomarker related to cardiovascular diseases. To further amplify the ECL signal of CTM, a novel dual-amplified signal strategy was established by inducing a polyamidoamine dendrimer (PAMAM) and gold nanoparticles (AuNPs). Importantly, we first proved that the ECL signal of the CTM/SO system could be enhanced by the PAMAM electric field. As the electron transfer rate was accelerated by the AuNP layer, this ECL signal was further enhanced in AuNP-modified electrodes. The ECL immunosensor showed desirable performance for PCSK9 analysis within a detection range of 50 fg mL to 10 ng mL and a low limit of detection of 19.12 ± 2.69 fg mL. Real sample detection suggested that the immunosensor holds great potential for analyzing clinical serum samples.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acsami.9b19246 | DOI Listing |
Anal Chem
January 2025
Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China.
The near-infrared electrochemiluminescence (NIR-ECL) technique has received special attention in cell imaging and biomedical analysis due to its deep tissue penetration, low background interference, and high sensitivity. Although cyanine-based dyes are promising NIR-ECL luminophores, limited ECL efficiency and the need for exogenous coreactants have prevented their widespread application. In this work, poly[9,9-bis(3'-(-dimethylamino)propyl)-2,7-fluorene]--2,7-(9,9-dioctylfluorene)] (PFN) was innovatively developed to significantly invigorate the NIR-ECL performance of heptamethine cyanine dye IR 783 by the resonance energy transfer (RET) strategy.
View Article and Find Full Text PDFACS Sens
January 2025
School of Chemistry and Life Sciences, Jiangsu Key Laboratory for Environmental Functional Materials, Suzhou University of Science and Technology, Suzhou, Jiangsu 215009, China.
Alzheimer's disease (AD) is characterized by progressive memory loss and cognitive decline, significantly impairing the daily life of elderly individuals. The low abundance of blood-based biomarkers in AD necessitates higher analytical technique requirements. Herein, one novel iridium-based ECL self-enhanced nanoemitter (TPrA@Ir-SiO) was unprecedentedly reported, and it was further used to construct an ultrasensitive ECL magnetic immunosensor by a multiple-signal amplification strategy to unequally sensitively and accurately detect the AD blood-based biomarker (P-tau181) in this work.
View Article and Find Full Text PDFAnal Chem
January 2025
National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China.
, a significant zoonotic pathogen, annually caused substantial economic losses in the swine industry and had intensified threat to public health due to the recent emergence of human-associated clade. In this study, we discovered that the rare-earth metal-based metal-organic frameworks (Y-BTC) possessed excellent ECL capabilities. After prereduction at high voltage, its ECL intensity was enhanced by two times.
View Article and Find Full Text PDFAnal Chem
January 2025
School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, P R China.
Serum amyloid A (SAA) is a key biomarker for diagnosing inflammatory responses in diseases like influenza and COVID-19. An electrochemiluminescence (ECL) biosensor has been constructed for signal enhancement in SAA detection by encapsulating 4,4',4″,4‴-(1,3,6,8-pyrenetetrayl) tetrakis-benzoic acid (TBAPy) into liposomes. Such biomimetic encapsulation shields the biologically important membrane to avoid aggregation of TBAPy and prevents quenching.
View Article and Find Full Text PDFBiosens Bioelectron
December 2024
Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China. Electronic address:
Multi-signal-based self-calibrating biosensors have become a research focus due to their superior accuracy and sensitivity in recent years. Herein, the potential-resolved differential ECL immunoassay based on dual co-reactants regulation was developed. Meso-tetra(4-carboxyphenyl)porphyrin (TCPP) functionalized zirconium dioxide (ZrO) composites (TCPP-ZrO) was first synthesized using TCPP as the luminophore and ZrO as the enhancer and stabilizer.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!