Ultralow-intensity near infrared light synchronously activated collaborative chemo/photothermal/photodynamic therapy.

Biomater Sci

State Key Laboratory Base of Novel Functional Materials and Preparation Science, School of Materials Science & Chemical Engineering, Ningbo University, Ningbo, Zhejiang315211, China.

Published: January 2020

Although combined chemotherapy (Chemo), photothermal (PTT) and photodynamic (PDT) in cancer therapy has drawn significant attention due to its superior anticancer ability, the required high intensity of irradiation results in serious photo-toxicity to healthy neighboring cells, and thus limits its biomedical applications. Herein, we developed an ultralow-intensity near infrared (NIR) light synchronously activated collaborative Chemo/PTT/PDT nanoplatform. The nanoplatform is composed of a highly emissive upconversion (UC) core, chlorin e6 (Ce6) photosensitizer and the anticancer drug doxorubicin hydrochloride (DOX) co-loaded in a mesoporous silica (MS) shell, and polyethylene glycol-modified graphene (PGO) acts as both the photothermal reagent and smart switch for promoted drug release. Upon 808 nm NIR light exposure with ultralow intensity (0.25 W cm-2), which is below the maximum permissible exposure (MPE, 0.33 W cm-2) for skin, the mild hyperpyrexia of PGO induced both cancer cell irreversible death for PTT and greatly promoted drug release for enhanced Chemo. On the other hand, the upconverted 660 nm light from UC activated Ce6 to generate reactive oxygen species for PDT, while the upconverted 540 nm light from UC could be employed for visualizing the treatment process. The in vitro and in vivo anticancer experiments demonstrate that the ultralow-intensity NIR light synchronously activated Chemo/PTT/PDT nanoplatform exhibits remarkable therapeutic efficacy with minimal photodamage.

Download full-text PDF

Source
http://dx.doi.org/10.1039/c9bm01607dDOI Listing

Publication Analysis

Top Keywords

light synchronously
12
synchronously activated
12
nir light
12
ultralow-intensity infrared
8
activated collaborative
8
chemo/ptt/pdt nanoplatform
8
promoted drug
8
drug release
8
light
6
infrared light
4

Similar Publications

Bioinspired Photo-Thermal Catalytic System using Covalent Organic Framework-based Aerogel for Synchronous Seawater Desalination and H2O2 Production.

Angew Chem Int Ed Engl

January 2025

Nankai University, School of Materials Science and Engineering, National Institute for Advanced Materials, TKL of Metal and Molecule-Based Material Chemistry, CHINA.

Efficient utilization of solar energy is widely regarded as a crucial solution to addressing the energy crisis and reducing reliance on fossil fuels. Coupling photothermal and photochemical conversion can effectively improve solar energy utilization yet remains challenging. Here, inspired by the photosynthesis system in green plants, we report herein an artificial solar energy converter (ASEC) composed of light-harvesting units as solar collector and oriented ionic hydrophilic channels as reactors and transporters.

View Article and Find Full Text PDF

Solar-driven CO photoreduction holds promise for sustainable fuel and chemical productions, but the complex proton-coupled multi-electron transfer processes and sluggish oxidation half-reaction kinetics substantially hinder its efficiency. Here, we devised a rational catalyst design to address these challenges by fabricating ferrocene carboxylic acid-functionalized CsSbBr nanocrystals (CSB-Fc NCs), which facilitate simultaneous benzyl alcohol oxidation and CO reduction reactions under visible-light irradiation. The synchronized proton-coupled electron transfer processes between the reduction and oxidation half-reactions on CSB-Fc NCs resulted in a 5-fold increase in the CO reduction rate (45.

View Article and Find Full Text PDF

Optimising lighting conditions to enhance seafarer adaptation to the '6-h on/6-h off' shift pattern: a balanced crossover study.

J Sleep Res

January 2025

Department of Light Sources and Illuminating Engineering, School of Information Science and Technology, Fudan University, Shanghai, China.

The '6-h on/6-h off' shift pattern could potentially disrupt the physiological rhythms and cognitive performance of seafarers, attributed to its shorter and more frequent shifts. Conversely, light exposure has been demonstrated to enhance cognitive abilities and synchronise physiological processes. Therefore, we studied the fatigue, cognition, sleep and rhythm of seafarers with different shifts to determine how light can benefit their performance.

View Article and Find Full Text PDF

Self-Sustained Biophotocatalytic Nano-Organelle Reactors with Programmable DNA Switches for Combating Tumor Metastasis.

Adv Mater

January 2025

Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, P. R. China.

Metastasis, the leading cause of mortality in cancer patients, presents challenges for conventional photodynamic therapy (PDT) due to its reliance on localized light and oxygen application to tumors. To overcome these limitations, a self-sustained organelle-mimicking nanoreactor is developed here with programmable DNA switches that enables bio-chem-photocatalytic cascade-driven starvation-photodynamic synergistic therapy against tumor metastasis. Emulating the compartmentalization and positional assembly strategies found in living cells, this nano-organelle reactor allows quantitative co-compartmentalization of multiple functional modules for the designed self-illuminating chemiexcited PDT system.

View Article and Find Full Text PDF

Research Progress in Fiber Bragg Grating-Based Ocean Temperature and Depth Sensors.

Sensors (Basel)

December 2024

College of Physics and Electronic Engineering, Hainan Normal University, Haikou 571158, China.

Fiber Bragg gratings (FBGs) are widely used in stress and temperature sensing due to their small size, light weight, high resistance to high temperatures, corrosion, electromagnetic interference, and low cost. In recent years, various structural enhancements and sensitization to FBGs have been explored to improve the performance of ocean temperature and depth sensors, thereby enhancing the accuracy and detection range of ocean temperature and depth data. This paper reviews advancements in temperature, pressure, and dual-parameter enhancement techniques for FBG-based sensors.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!