High-Pressure Synthesis and Crystal Structure of MoC-Type Tungsten Nitride by Nitridation with Ammonium Chloride.

Inorg Chem

Department of Materials Physics, Graduate School of Engineering , Nagoya University, Furo-cho, Chikusa-ku, Nagoya , Aichi 464-8603 , Japan.

Published: December 2019

A novel tungsten nitride, MoC-type WN, was synthesized at 6 GPa and 1200 °C via nitridation of tungsten by ammonium chloride as a nitrogen source. This compound is isostructural with γ'-MoC, which has a hexagonal structure with a space group of 6/ (No. 194). Micrometer-sized single crystals of MoC-type WN were grown in molten ammonium chloride flux. In addition, NaCl-type WN and WC-type WN were synthesized via nitridation by ammonium chloride at 6 GPa and 1000 °C. Ammonium chloride is appropriate as a nitrogen source for nitride synthesis under high pressure. The new WN phase crystallizes in the hexagonal structure with unit cell parameters of = 2.89248(2) Å and = 10.17069(7) Å. The chemical formula of MoC-type WN refined by the Rietveld analysis from powder X-ray diffraction data was WN. The zero-pressure bulk modulus, , of MoC-type WN was determined to be 338(3) GPa, which can be expected to be a hard material.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.inorgchem.9b01945DOI Listing

Publication Analysis

Top Keywords

ammonium chloride
20
tungsten nitride
8
nitridation ammonium
8
nitrogen source
8
hexagonal structure
8
moc-type
5
ammonium
5
chloride
5
high-pressure synthesis
4
synthesis crystal
4

Similar Publications

Quaternary ammonium compounds (QACs) have served as essential antimicrobial agents for nearly a century due to their rapid membrane-disrupting action. However, the emergence of bacterial resistance and environmental concerns have driven interest in alternative designs, such as "soft QACs", which are designed for enhanced biodegradability and reduced resistance potential. In this study, we explored the antibacterial properties and mechanisms of action of our newly synthesized soft QACs containing a labile amide bond within a quinuclidine scaffold.

View Article and Find Full Text PDF

Resorcinol-based Bolaamphiphilic Quaternary Ammonium Compounds.

ChemMedChem

January 2025

Villanova University, Chemistry, 800 E Lancaster Ave, 19085, Villanova, UNITED STATES OF AMERICA.

Quaternary ammonium compounds (QACs) play crucial disinfectant roles in healthcare, industry, and domestic settings. Most commercially utilized QACs like benzalkonium chloride have a common architectural theme, leading to a rise in bacterial resistance and urgent need for novel structural classes. Some potent QACs such as chlorhexidine (CHX) and octenidine (OCT) feature a bolaamphiphilic architecture, comprised of two cationic centers at the molecular periphery and a non-polar region connecting them; these compounds show promise to elude bacterial resistance mechanisms.

View Article and Find Full Text PDF

Cetylpyridinium chloride (CPC) is a quaternary ammonium antimicrobial used in numerous personal care products, human food, cosmetic products, and cleaning solutions. Yet, there is minimal published data on CPC effects on eukaryotes, immune signaling, and human health. Previously, it was shown that low-micromolar CPC inhibits rat mast cell function by inhibiting antigen (Ag)-stimulated Ca mobilization, microtubule polymerization, and degranulation.

View Article and Find Full Text PDF

Arsenocholine-containing methacrylate (MTAsB) inspired by marine organisms was synthesized by the reaction of 2-bromoethyl methacrylate and trimethylarsine to investigate its polymerization behavior and the fundamental properties of the resulting polymer. Controlled radical polymerization of MTAsB proceeded in the presence of a copper catalyst and imidazolium chloride at 60 °C for 8 h to give a water-soluble polycation with a 94% yield. The smaller amount of nonfreezing water and intermediate water of poly(MTAsB) was observed compared with that of the ammonium-containing polycations.

View Article and Find Full Text PDF

Lanthanide-polyoxometalate-based self-erasing luminescent hydrogels with time-dependent and resilient properties for advanced information encryption.

Mater Horiz

January 2025

Key Laboratory of Functional Inorganic Material Chemistry (MOE), School of Chemistry and Materials Science, Heilongjiang University, Harbin 150080, China.

In such an era of information explosion, improving the level of information security is still a challenging task. Self-erasing luminescent hydrogels are becoming ideal candidates for improving the level of information security with simple encryption and decryption methods. Herein, a lanthanide-polyoxometalate-based self-erasing luminescent hydrogel with time-dependent and resilient properties was constructed through a covalent crosslinked network constructed with polyacrylamide and a non-covalent crosslinked network constructed with [2-(methacryloyloxy)ethyl]trimethyl ammonium chloride/NaDyWO, along with doping urease.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!