Polyester Stereocomplexes Beyond PLA: Could Synthetic Opportunities Revolutionize Established Material Blending?

Macromol Rapid Commun

Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstr. 10, 07743, Jena, Germany.

Published: January 2020

This review summarizes the current literature regarding stereocomplexation of different polyesters based on α- as well as β-hydroxy acids beyond the well-known poly(lactic acid). Representing the initial step toward stereocomplexation, synthetic approaches needed to obtain and analyze isotactic polyesters are summarized. The basic technologies for the preparation and characterization of the respective stereocomplexes (SCs) are described, and published material properties are related to the structure of the respective polyesters. The variety of available SC materials is very limited despite the multiple options provided by state-of-the-art stereoselective monomer synthesis and polymerization methods. A combination of knowledge from the three scientific areas (i.e., organic chemistry, synthetic macromolecular chemistry, and materials science) thus has enormous potential to create novel materials with additional features enabled by the introduction of functional moieties to such materials besides the adjustment of thermal as well as mechanical properties.

Download full-text PDF

Source
http://dx.doi.org/10.1002/marc.201900560DOI Listing

Publication Analysis

Top Keywords

polyester stereocomplexes
4
stereocomplexes pla
4
pla synthetic
4
synthetic opportunities
4
opportunities revolutionize
4
revolutionize established
4
established material
4
material blending?
4
blending? review
4
review summarizes
4

Similar Publications

Catalyst Improved Stereoselectivity and Regioselectivity Control to Access Completely Alternating Poly(lactic-co-glycolic acid) with Enhanced Properties.

Angew Chem Int Ed Engl

December 2024

Key Laboratory of Photoelectric Conversion and Utilization of Solar Energy, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China.

The poly(lactic-co-glycolic acid) (PLGA) with completely alternating sequence has attracted growing attention as an ideal candidate in controlled drug delivery. However, the approach to completely alternating PLGA remains a challenge. Herein, we report the successful synthesis of completely alternating PLGA via highly regioselective and stereoselective ring-opening polymerization.

View Article and Find Full Text PDF

Enhancing the ductility of polylactide (PLA) through toughening modification to expand the application range of PLA aligns with the requirements of green development. In this study, eco-friendly bio-based plastic polyamide 11 (PA11) was chosen to modify poly(l-lactide) (PLLA). PA11 and poly(d-lactide) (PDLA) were grafted onto the main chain of ADR via simple reactive processing and utilized as reactive compatibilizers to improve toughening efficiency of PA11.

View Article and Find Full Text PDF

The study investigates the impact of the d-lactic acid units content on the crystallinity and crystal structure of commercial poly(lactic acid) (PLA) grades, which are copolymers of poly(l-lactic acid) (PLLA) containing a minor amount of d-units. As the d-units content increases, a detectable decrease in crystallinity was observed along with a simultaneous rise in mobile amorphous fraction (MAF) and a reduction in rigid amorphous fraction (RAF). The percentage of d-units was found not to significantly affect RAF thickness, suggesting that the d-units are not completely excluded from the crystals.

View Article and Find Full Text PDF

Ultralow-resistance and self-sterilization biodegradable nanofibrous membranes for efficient PM removal and machine learning-assisted health management.

J Hazard Mater

December 2024

School of Materials Science and Physics, China University of Mining and Technology, Xuzhou 221116, China; Jiangsu Engineering Research Center of Dust Control and Occupational Protection, Xuzhou 221008, China; College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Chengdu 610065, China. Electronic address:

Article Synopsis
  • Scientists have created special nanofibrous membranes (NFMs) that can clean the air, protect against viruses, and help diagnose respiratory diseases.
  • * They used a smart technique to make these membranes stronger and more effective by mixing different types of materials and adding tiny particles.
  • * The membranes are also good for the environment, as they can break down naturally, and they work well even in humid conditions while also helping to recognize different breathing patterns using advanced technology.
View Article and Find Full Text PDF

The advancement of intelligent and biodegradable respiratory protection equipment is pivotal in the realm of human health engineering. Despite significant progress, achieving a balance between efficient filtration and intelligent monitoring remains a great challenge, especially under conditions of high relative humidity (RH) and high airflow rate (AR). Herein, we proposed an interfacial stereocomplexation (ISC) strategy to facilitate intensive interfacial polarization for poly(lactic acid) (PLA) nanofibrous membranes, which were customized for machine learning-assisted respiratory diagnosis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!