A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Advanced Actuator Materials Powered by Biomimetic Helical Fiber Topologies. | LitMetric

Advanced Actuator Materials Powered by Biomimetic Helical Fiber Topologies.

Adv Mater

Australian Institute for Innovative Materials, University of Wollongong, Wollongong, NSW, 2522, Australia.

Published: May 2020

Helical constructs are ubiquitous in nature at all size domains, from molecular to macroscopic. The helical topology confers unique mechanical functions that activate certain phenomena, such as twining vines and vital cellular functions like the folding and packing of DNA into chromosomes. The understanding of active mechanical processes in plants, certain musculature in animals, and some biochemical processes in cells provides insight into the versatility of the helix. Most of these natural systems consist of helically oriented filaments embedded in a compliant matrix. In some cases, the matrix can change volume and in others the filaments can contract and the matrix is passive. In both cases, the helically arranged fibers determine the overall shape change with a great variety of responses involving length contraction/elongation, twisting, bending, and coiling. Synthetic actuator materials and systems that employ helical topologies have been described recently and demonstrate many fascinating and complex shape changes. However, significant new opportunities exist to mimic some of the most remarkable actions in nature, including the Vorticella's coiling stalk and DNA's supercoils, in the quest for superior artificial muscles.

Download full-text PDF

Source
http://dx.doi.org/10.1002/adma.201904093DOI Listing

Publication Analysis

Top Keywords

actuator materials
8
advanced actuator
4
materials powered
4
powered biomimetic
4
helical
4
biomimetic helical
4
helical fiber
4
fiber topologies
4
topologies helical
4
helical constructs
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!