A strongly 'pinned' ionic liquid (IL, [BMIM][PF6]) film on a silicon (Si) surface via carbon capsuled Fe3O4 core-shell (Fe3O4@C) nanoparticles is achieved, revealing excellent friction-reducing ability at a high load. The adhesion force is measured to be ∼198 nN at the Fe3O4@C-Si interface by the Fe3O4@C colloidal AFM tip, which is stronger than that at both Fe3O4@C-Fe3O4@C (∼60 nN) and IL-Si (∼10 nN) interfaces, indicating a strong 'normal pin-force' towards the Si substrate. The resulting strengthened force enables the formation of lateral IL networks via the dipole-dipole attractions among Fe3O4 cores. The observed blue shift of the characteristic band related to the IL anion in the ATR-FTIR spectra confirmed the enhanced interaction. The N-Si, P-O chemical bonds formed as a result of the IL interactions with the Si substrate confirmed by XPS spectroscopy suggested that the IL lay on the Si plane. This orientation is favorable for Fe3O4@C nanoparticles to exert 'normal pin-force' and press the IL film strongly onto surfaces. The IL ions/clusters are thus anchored by these Fe3O4@C 'pins' onto the substrate to form a dense film, resulting in a smaller interaction size parameter, which is responsible for the reduced friction coefficient μ.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/c9cp05905a | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!