Therapeutic Targets for the Treatment of Comorbidities Associated with Epilepsy.

Curr Mol Pharmacol

Department of Pharmacology, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, Vile Parle (West), Mumbai, India.

Published: June 2021

One of the most common neurological disorders, which occurs among 1% of the population worldwide, is epilepsy. Therapeutic failure is common with epilepsy and nearly about 30% of patients fall in this category. Seizure suppression should not be the only goal while treating epilepsy but associated comorbidities, which can further worsen the condition, should also be considered. Treatment of such comorbidities such as depression, anxiety, cognition, attention deficit hyperactivity disorder and, various other disorders which co-exist with epilepsy or are caused due to epilepsy should also be treated. Novel targets or the existing targets are needed to be explored for the dual mechanism which can suppress both the disease and the comorbidity. New therapeutic targets such as IDO, nNOS, PAR1, NF-κb are being explored for their role in epilepsy and various comorbidities. This review explores recent therapeutic targets for the treatment of comorbidities associated with epilepsy.

Download full-text PDF

Source
http://dx.doi.org/10.2174/1874467212666191203101606DOI Listing

Publication Analysis

Top Keywords

therapeutic targets
12
treatment comorbidities
12
targets treatment
8
comorbidities associated
8
epilepsy
8
associated epilepsy
8
comorbidities
5
therapeutic
4
epilepsy common
4
common neurological
4

Similar Publications

RNA interference (RNAi) has rapidly matured as a novel therapeutic approach. In this field, chemical modifications have been critical to the clinical success of short interfering RNAs (siRNAs). Notwithstanding the significant advances, achieving robust durability and gene silencing in extrahepatic tissues, as well as reducing off-target effects of siRNA, are areas where chemical modifications can still improve siRNA performance.

View Article and Find Full Text PDF

Chitinase-3-like Protein 1 Reduces the Stability of Atherosclerotic Plaque via Impairing Macrophagic Efferocytosis.

J Cardiovasc Transl Res

January 2025

Department of Vascular and Endovascular Surgery, Changzheng Hospital, Affiliated to the Naval Medical University, Shanghai, 200003, China.

CHI3L1 is strongly associated with atherosclerosis, but its role in macrophages remains unknown. In this study, we observed a significant up-regulation of CHI3L1 in both carotid plaques and serum of symptomatic patients, and demonstrated that CHI3L1 impairs the efferocytosis of macrophages by down-regulating crucial efferocytic mediator MFGE8 through inhibiting ATF2, which binds directly to the enhancer of MFGE8. In human plaques, we observed a negative correlation between CHI3L1 expression and both ATF2 and MFGE8 levels, further proved their involvement in plaque destabilization.

View Article and Find Full Text PDF

Cannabinoid-based Pharmacology for the Management of Substance Use Disorders.

Curr Top Behav Neurosci

January 2025

Department of Neurobiology, University of Maryland, School of Medicine, Baltimore, MD, USA.

In the last two decades, the endocannabinoid system has emerged as a crucial modulator of motivation and emotional processing. Due to its widespread neuroanatomical distribution and characteristic retrograde signaling nature, cannabinoid type I receptors and their endogenous ligands finely orchestrate somatic and axon terminal activity of dopamine neurons. Owing to these unique features, this signaling system is a promising pharmacological target to ameliorate dopamine-mediated drug-seeking behaviors while circumventing the adverse side effects of, for instance, dopaminergic antagonists.

View Article and Find Full Text PDF

The prognosis of B cell acute lymphoblastic leukemia (B-ALL) is poor, primarily due to drug resistance and relapse. Ga15, encoded by GNA15, belongs to the G protein family, with G protein-coupled receptors playing a crucial role in multiple biological process. GNA15 has been reported to be involved in various malignancies; however, its potential role in B-ALL remain unknown.

View Article and Find Full Text PDF

Identification, Clinical Values, and Prospective Pathway Signaling of Lipid Metabolism Genes in Epilepsy and AED Treatment.

Mol Neurobiol

January 2025

Department of Neurology, School of Medicine, Affiliated ZhongDa Hospital, Southeast University, Dingjiaqiao 87, Nanjing, 210009, Jiangsu, China.

The dysregulation of lipid metabolism has been associated with the etiology and progression of the neurological pathology. However, the roles of lipid metabolism and the molecular mechanism in epilepsy and the use of antiepileptic drugs (AEDs) are relatively understudied. Gene expression profiles of GSE143272 from blood samples were included for differential analysis, and the lipid metabolism-related differentially expressed genes (DEGs) were identified.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!