Duchenne muscular dystrophy (DMD) is a debilitating fatal X-linked muscle disorder. Recent findings indicate that IGFs play a central role in skeletal muscle regeneration and development. Among IGFs, insulinlike growth factor 2 (IGF2) is a key regulator of cell growth, survival, migration and differentiation. The type 2 IGF receptor (IGF2R) modulates circulating and tissue levels of IGF2 by targeting it to lysosomes for degradation. We found that IGF2R and the store-operated Ca channel CD20 share a common hydrophobic binding motif that stabilizes their association. Silencing CD20 decreased myoblast differentiation, whereas blockade of IGF2R increased proliferation and differentiation in myoblasts via the calmodulin/calcineurin/NFAT pathway. Remarkably, anti-IGF2R induced CD20 phosphorylation, leading to the activation of sarcoplasmic/endoplasmic reticulum Ca -ATPase (SERCA) and removal of intracellular Ca . Interestingly, we found that IGF2R expression was increased in dystrophic skeletal muscle of human DMD patients and mdx mice. Blockade of IGF2R by neutralizing antibodies stimulated muscle regeneration, induced force recovery and normalized capillary architecture in dystrophic mdx mice representing an encouraging starting point for the development of new biological therapies for DMD.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6949491 | PMC |
http://dx.doi.org/10.15252/emmm.201911019 | DOI Listing |
Molecules
November 2023
Recepton Sp. z o.o., Trzy Lipy 3, 80-172 Gdańsk, Poland.
Lysosome-targeting chimeras (LYTACs) have recently been developed to facilitate the lysosomal degradation of specific extracellular and transmembrane molecular targets. However, the LYTAC particles described to date are based on glycopeptide conjugates, which are difficult to prepare and produce on a large scale. Here, we report on the development of pure protein LYTACs based on the non-glycosylated IGF2 peptides, which can be readily produced in virtually any facility capable of monoclonal antibody production.
View Article and Find Full Text PDFMetabolism
January 2023
Department of Endocrinology and Metabolism, The Second Affiliated Hospital of Guilin Medical University, Guilin, Guangxi 541199, PR China; Guangxi Key Laboratory of Diabetic Systems Medicine, Guilin Medical University, Guilin, Guangxi 541199, PR China; Guangxi Key Laboratory of Brain and Cognitive Neuroscience, Guilin Medical University, Guilin, Guangxi 541199, PR China; Guangxi Health Commission Key Laboratory of Glucose and Lipid Metabolism Disorders, The Second Affiliated Hospital of Guilin Medical University, Guilin, Guangxi 541199, PR China. Electronic address:
Background: Impairment of regulatory T (Treg) cells function is implicated in the pathogenesis of immune imbalance-mediated cognitive impairment. A complete understanding of whether and how this imbalance affect cognitive function in type 2 diabetes is lacking, and the driver affecting this imbalance remains unknown.
Methods: We examined the impact of enzymatic and non-enzymatic function of DPP4 on Treg cell impairment, microglia polarization and diabetes-associated cognitive defects and identified its underlying mechanism in type 2 diabetic patients with cognitive impairment and in db/db mice.
EMBO Mol Med
January 2020
Stem Cell Laboratory, Department of Pathophysiology and Transplantation, Unit of Neurology, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Centro Dino Ferrari, Universitá degli Studi di Milano, Milan, Italy.
Duchenne muscular dystrophy (DMD) is a debilitating fatal X-linked muscle disorder. Recent findings indicate that IGFs play a central role in skeletal muscle regeneration and development. Among IGFs, insulinlike growth factor 2 (IGF2) is a key regulator of cell growth, survival, migration and differentiation.
View Article and Find Full Text PDFAm J Physiol Regul Integr Comp Physiol
June 2013
Department of Biological Sciences, University of North Texas, Denton, TX 76203, USA.
Reptile embryos tolerate large decreases in the concentration of ambient oxygen. However, we do not fully understand the mechanisms that underlie embryonic cardiovascular short- or long-term responses to hypoxia in most species. We therefore measured cardiac growth and function in snapping turtle embryos incubated under normoxic (N21; 21% O₂) or chronic hypoxic conditions (H10; 10% O₂).
View Article and Find Full Text PDFJ Neurosci
April 2012
Institute for Anatomy and Cell Biology, Ulm University, D-89081 Ulm, Germany.
Alterations of learning and memory in mice with deregulated neuron-specific nuclear factor κB (NF-κB) activity support the idea that plastic changes of synaptic contacts may depend at least in part on IκB kinase (IKK)/NF-κB-related synapse-to-nucleus signaling. There is, however, little information on the molecular requirements and mechanisms regulating this IKK/NF-κB-dependent synapse development and remodeling. Here, we report that the NF-κB inducing IKK kinase complex is localized at the postsynaptic density (PSD) and activated under basal conditions in the adult mouse brain.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!