Background: Continuous digital hypothermia (CDH) prevents lamellar failure in the euglycaemic hyperinsulinaemic clamp (EHC) and oligofructose (OF) laminitis models, but the mechanisms remain unclear.
Objectives: To evaluate the effects of CDH on lamellar energy metabolism and perfusion in healthy horses and during EHC and OF laminitis models.
Study Design: In vivo experiment.
Methods: Archived samples were used from Standardbred geldings that received no treatment (CON) (n = 8) or underwent EHC (n = 8) or OF (n = 6) laminitis models. Both forelimbs were instrumented with a lamellar microdialysis system, and one forelimb was cooled (CDH) with the other maintained at ambient temperature (AMB). Microdialysate was collected every 6 hours and analysed for glucose, lactate and pyruvate concentrations and lactate to pyruvate ratio (L:P). Microdialysis urea clearance was used to estimate lamellar tissue perfusion. Data were analysed using a mixed-effects linear regression model.
Results: Glucose did not change in CDH limbs relative to AMB in CON (P = .3), EHC (P = .3) or OF (P = .6) groups. There was a decrease in lactate (P < .001) and pyruvate (P < .01) in CDH limbs relative to AMB in all groups. L:P decreased in CON CDH relative to CON AMB (P < .001) but was not different in EHC (P = .6) and OF (P = .07) groups. Urea clearance decreased in CDH limbs relative to AMB in CON (P = .002) and EHC (P < .001), but not in OF (P = .4).
Main Limitations: The EHC model may not mimic natural endocrinopathic laminitis.
Conclusions: CDH caused a marked decrease in lamellar glucose metabolism (CON, EHC and OF) and perfusion (CON and EHC) without affecting lamellar glucose concentration. Although cellular energy failure is not a primary pathophysiological event in EHC and OF laminitis models, CDH may act by limiting energy supply to pathologic cellular processes whilst preserving those critical to lamellar homoeostasis.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/evj.13215 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!