AI Article Synopsis

Article Abstract

Reprogramming differentiated cells into induced pluripotent stem cells (iPSCs) consists in dedifferentiation of the cells into the pluripotent state, i.e., stem cells. Since T cells play a pivotal role in our immune system, T cell reprogramming into iPSCs and subsequent redifferentiation of iPSCs toward the original cells hold a great promise for future cell therapy and for further exploring the biology of such T cells. Mucosal-associated invariant T (MAIT) cells are an innate-like T cells linking innate immunity to adaptive immunity, and believed to be implicated in host protection to infection, in inflammation, and in immune homeostasis, which makes them an attractive target for the clinical intervention. In this chapter, we will outline the protocol for reprogramming MAIT cells to pluripotency with Sendai virus vector and redifferentiation. This technique will allow expansion of MAIT cells for cell therapy against the intractable infectious diseases such as HIV/Tuberculosis or cancer.

Download full-text PDF

Source
http://dx.doi.org/10.1007/978-1-0716-0207-2_16DOI Listing

Publication Analysis

Top Keywords

mait cells
16
cells
12
reprogramming mait
8
cells pluripotency
8
stem cells
8
cell therapy
8
reprogramming
4
pluripotency redifferentiation
4
redifferentiation reprogramming
4
reprogramming differentiated
4

Similar Publications

We have developed a 37-color spectral flow cytometry panel to assess the phenotypical differentiation of innate and adaptive immune lymphoid subsets within human intestinal tissue. In addition to lineage markers for identifying innate lymphoid cells (ILC), TCRγδ, MAIT (mucosal-associated invariant T), natural killer (NK), CD4 and CD8 T cells, we incorporated markers of differentiation and activation (CD45RA, CD45RO, CD25, CD27, CD38, CD39, CD69, CD103, CD127, CD161, HLA-DR, CTLA-4 [CD152]), alongside transcription factors (Bcl-6, FoxP3, GATA-3, Helios, T-bet, PU.1 and RORγt) and chemokine receptors (CCR4, CCR6, CCR7, CXCR3, and CXCR5).

View Article and Find Full Text PDF

Myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) is a debilitating but poorly-understood disease. ME/CFS symptoms can range from mild to severe, and include immune system effects alongside incapacitating fatigue and post-exertional disease exacerbation. In this study, we examined immunological profiles of people living with ME/CFS by flow cytometry, focusing on cytotoxic cells, to determine whether people with mild/moderate (n= 43) or severe ME/CFS (n=53) expressed different immunological markers.

View Article and Find Full Text PDF

Cigarette smoke components modulate the MR1-MAIT axis.

J Exp Med

February 2025

Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Australia.

Tobacco smoking is prevalent across the world and causes numerous diseases. Cigarette smoke (CS) compromises immunity, yet little is known of the components of CS that impact T cell function. MR1 is a ubiquitous molecule that presents bacterial metabolites to MAIT cells, which are highly abundant in the lungs.

View Article and Find Full Text PDF

The role of immune cells in neurodegeneration remains incompletely understood. Our recent study revealed the presence of mucosal-associated invariant T (MAIT) cells in the meninges, where they express antioxidant molecules to maintain meningeal barrier integrity. Accumulation of misfolded tau proteins are a hallmark of neurodegenerative diseases.

View Article and Find Full Text PDF

Role of the TME in immune checkpoint blockade resistance of non-small cell lung cancer.

Cancer Drug Resist

December 2024

Department of Oncology I, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200437, China.

Primary and secondary resistance to immune checkpoint blockade (ICB) reduces its efficacy. The mechanisms underlying immunotherapy resistance are highly complex. In non-small cell lung cancer (NSCLC), these mechanisms are primarily associated with the loss of programmed cell death-ligand 1 (PD-L1) expression, genetic mutations, circular RNA axis and transcription factor regulation, antigen presentation disorders, and dysregulation of signaling pathways.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!