AI Article Synopsis

  • Nitroguanidine (NQ) degrades when exposed to UV radiation, but the specific mechanism behind its photolysis is not completely clear.
  • Earlier studies suggest that nitrocompounds, including NQ, can shift to a triplet state during electronic excitation, which may enhance their degradation.
  • Detailed investigations reveal that in its electronic triplet state, NQ has a greater degradation ability, leading to the breakdown of bonds and the formation of various products like nitrite and hydroxyguanidine.

Article Abstract

It is well known that nitroguanidine (NQ) undergoes photodegradation when exposed to UV-radiation. However, the mechanism of NQ photolysis is not fully understood. Earlier investigations have shown that nitrocompounds undergo to their triplet state population through crossing of electronic singlet and triplet excited state potential energy surfaces due to the nitrogroup rotation and nonplanarity under electronic excitation. Therefore, it is expected that under electronic excitation, the presence of nitrogroup in NQ would also lead to the population of electronic lowest energy triplet state. To shed a light on the degradation of NQ in alkaline solution under electronic excitation, we performed a detailed investigation of a possible degradation mechanism at the IEFPCM/B3LYP/6-311++G(d,p) level in the electronic lowest energy triplet state. We found that degradation ability of NQ in the electronic triplet state would be significantly larger than in the electronic ground singlet state. It was revealed that the photodecomposition of nitroguanidine might occur through several pathways involving N-N and C-N bond ruptures, nitrite elimination, and hydroxide ion attachment. Nitrogen of nitrogroup would be released in the form of nitrite and nitrogen (I) oxide. Computationally predicted intermediates and products of nitroguanidine photolysis such as nitrite, hydroxyguanidine, cyanamide, and urea correspond to experimentally observed species.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00894-019-4252-8DOI Listing

Publication Analysis

Top Keywords

triplet state
20
electronic excitation
12
investigation degradation
8
electronic
8
electronic lowest
8
lowest energy
8
energy triplet
8
state
7
triplet
6
density functional
4

Similar Publications

Response to EGFR/NTRK/MET Co-Inhibition Guided by Paired NGS in Advanced NSCLC With Acquired EGFR L858R/T790M/C797S Mutations.

J Natl Compr Canc Netw

December 2024

1Division of Thoracic Tumor Multimodality Treatment, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China.

EGFR tyrosine kinase inhibitors (TKIs) have significantly improved clinical outcomes for patients with non-small cell lung cancer (NSCLC) harboring EGFR-activating mutations. However, resistance to TKI therapy often develops due to secondary EGFR mutations or the activation of bypass signalling pathways. Next-generation sequencing (NGS) can efficiently identify actionable genetic alterations throughout treatment.

View Article and Find Full Text PDF

Photoinduced Reductive C-O Couplings from Unsymmetrical Bis-Cyclometalated Pt(IV) Dicarboxylato Complexes.

Inorg Chem

December 2024

Departamento de Química Inorgánica, Facultad de Química, Universidad de Murcia, Campus de Espinardo 19, Murcia 30100, Spain.

Unsymmetrical bis-cyclometalated dicarboxylato complexes (-6-32)-[Pt(tpy)(OCR)] [tpy = cyclometalated 2-(-tolyl)pyridine, R = -Bu (), Me (), Ph (), CF ()], are obtained from the reaction of -[Pt(tpy)] with the appropriate PhI(OCR) reagent. Treatment of complexes of this type with different carboxylates (R'CO) results in the formation of mixed-carboxylato derivatives, namely (-6-43)-[Pt(tpy)(OCMe)(OCR')] [R' = -Bu (), CF (), Ph ()], (-6-34)-[Pt(tpy)(OCCF)(OCR')] [R' = -Bu (), Me (), Ph ()], and (-6-34)-[Pt(tpy)(OC--Bu)(OCMe)] (). Irradiation of - and - with UV light (365 nm) in MeCN gives 5-methyl-2-(2-pyridyl)phenyl pivalate (), 5-methyl-2-(2-pyridyl)phenyl acetate () or 5-methyl-2-(2-pyridyl)phenyl benzoate () as the major photoproduct from most complexes, resulting from a reductive C-O coupling between a tpy ligand and a carboxylato ligand.

View Article and Find Full Text PDF

Organometallic Photocatalyst-Promoted Synthesis and Modification of Carbohydrates under Photoirradiation.

Chem Rec

December 2024

Qiandongnan Traditional Medicine Research & Development Center, School of Life and Health Science, Kaili University, 3 Kaiyuan Road, Qiandongnan Miao and Dong Autonomous Prefecture, Kaili, 556011, China.

Carbohydrates are natural, renewable, chemical compounds that play crucial roles in biological systems. Thus, efficient and stereoselective glycosylation is an urgent task for the preparation of pure and structurally well-defined carbohydrates. Photoredox catalysis has emerged as a powerful tool in carbohydrate chemistry, providing an alternative for addressing some of the challenges of glycochemistry.

View Article and Find Full Text PDF

Heavy atom effects on synthetic pyranoanthocyanin analogues.

Photochem Photobiol

December 2024

Instituto de Química, Universidade de São Paulo, São Paulo, SP, Brazil.

Pyranoflavylium cations are synthetic analogues of pyranoanthocyanins, the much more color-stable compounds that are formed spontaneously from grape anthocyanins during the maturation of red wines. In the present work, our studies of the photophysical properties of pyranoanthocyanin analogues are extended to include nine pyranoflavylium cations substituted with one or two bromo and/or iodo heavy atoms. The room temperature fluorescence, 77 K fluorescence and phosphorescence, triplet formation in solution, and sensitized singlet oxygen formation, with excited state acidity suppressed by the addition of trifluoroacetic acid, are compared to those of similar pyranoflavylium cations that do not contain a heavy atom.

View Article and Find Full Text PDF

The synthesis, electrochemical, spectroelectrochemical, photophysical and light induced electron transfer reactions in two new anthanthrene quinodimethanes have been studied and analyzed in the context of dynamic electrochemistry. Their properties are dependent on the interconversion between folded and twisted forms, which are separated by a relatively small energy range, thus allowing to explore their interconversion by variable temperature measurements. The photophysics of these molecules is mediated by a diradical excited state with a twisted structure that habilitates rapid intersystem crossing.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!