A tumorigenic factor, AIMP2 lacking exon 2 (AIMP2-DX2), is often upregulated in many cancers. However, how its cellular level is determined is not understood. Here, we report heat-shock protein HSP70 as a critical determinant for the level of AIMP2-DX2. Interaction of the two factors was identified by interactome analysis and structurally determined by X-ray crystallography and NMR analyses. HSP70 recognizes the amino (N)-terminal flexible region, as well as the glutathione S-transferase domain of AIMP2-DX2, via its substrate-binding domain, thus blocking the Siah1-dependent ubiquitination of AIMP2-DX2. AIMP2-DX2-induced cell transformation and cancer progression in vivo was further augmented by HSP70. A positive correlation between HSP70 and AIMP2-DX2 levels was shown in various lung cancer cell lines and patient tissues. Chemical intervention in the AIMP2-DX2-HSP70 interaction suppressed cancer cell growth in vitro and in vivo. Thus, this work demonstrates the importance of the interaction between AIMP2-DX2 and HSP70 on tumor progression and its therapeutic potential against cancer.

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41589-019-0415-2DOI Listing

Publication Analysis

Top Keywords

interaction aimp2-dx2
8
aimp2-dx2 hsp70
8
cancer cell
8
aimp2-dx2
7
hsp70
6
cancer
5
targeting interaction
4
hsp70 suppresses
4
suppresses cancer
4
cancer development
4

Similar Publications

Article Synopsis
  • AIMP2-DX2 (DX2) is a variant of a protein linked to cancer, and reducing its levels can help stop tumor growth.
  • Researchers found that a compound called SDL01 enhances the interaction between DX2 and another protein, Siah1, promoting DX2's degradation.
  • SDL01 binds to a specific area on DX2, causing a change in its shape that strengthens its interaction with Siah1, showing that drug-induced changes can alter protein interactions.*
View Article and Find Full Text PDF

Identification and structure of AIMP2-DX2 for therapeutic perspectives.

BMB Rep

July 2024

Insitute of Systems Biology, Pusan National University, Busan 46241; Department of Molecular Biology, College of Natural Sciences, Pusan National University, Busan 46241, Korea.

Regulation of cell fate and lung cell differentiation is associated with Aminoacyl-tRNA synthetases (ARS)-interacting multifunctional protein 2 (AIMP2), which acts as a non-enzymatic component required for the multi-tRNA synthetase complex. In response to DNA damage, a component of AIMP2 separates from the multi-tRNA synthetase complex, binds to p53, and prevents its degradation by MDM2, inducing apoptosis. Additionally, AIMP2 reduces proliferation in TGF-β and Wnt pathways, while enhancing apoptotic signaling induced by tumor necrosis factor-β.

View Article and Find Full Text PDF

ARS-interacting multifunctional proteins 2 (AIMP2) is known to be a powerful tumour suppressor. However, the target AIMP2-DX2, AIMP2-lacking exon 2, is often detected in many cancer patients and cells. The predominant approach for targeting AIMP-DX2 has been attempted small molecule mediated inhibition, but due to the lack of satisfactory activity against AIMP2-DX2, new therapeutic strategies are needed to develop a novel drug for AIMP2-DX2.

View Article and Find Full Text PDF

Anti-apoptotic Splicing Variant of AIMP2 Recover Mutant SOD1-Induced Neuronal Cell Death.

Mol Neurobiol

January 2023

Department of Pharmacology, College of Pharmacy, Kyung Hee University, Seoul, 02447, Republic of Korea.

Although a couple of studies have reported that mutant superoxide dismutase 1 (SOD1), one of the causative genes of familial amyotrophic lateral, interacts physically with lysyl-tRNA synthetase (KARS1) by a gain of function, there is limited evidence regarding the detailed mechanism about how the interaction leads to neuronal cell death. Our results indicated that the aminoacyl-tRNA synthetase-interacting multi-functional protein 2 (AIMP2) mediated cell death upon the interplay between mutant SOD1 and KARS1 in ALS. Binding of mutant SOD1 with KARS1 led to the release of AIMP2 from its original binding partner KARS1, and the free form of AIMP2 induced TRAF2 degradation followed by TNF-α-induced cell death.

View Article and Find Full Text PDF

Discovery of benzodioxane analogues as lead candidates of AIMP2-DX2 inhibitors.

Bioorg Med Chem Lett

October 2022

Medicinal Chemistry, Institut Pasteur Korea, 16, Daewangpangyo-ro 712 beon-gil, Bundang-gu, Seongnam-si, Gyeonggi-do 13488, Korea. Electronic address:

Aminoacyl-tRNA synthetase (ARS) interacting multifunctional protein2 (AIMP2) plays a vital role in protein synthesis. However, a splicing variant in which the second of the four exons of AIMP2 is deleted, inhibits the tumor suppression activity of AIMP2. Herein, we describe our discovery of series of potent AIMP2-DX2 inhibitors that are targeting lung cancer.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!