Computational identification of MiRNA-7110 from pulmonary arterial hypertension (PAH) ESTs: a new microRNA that links diabetes and PAH.

Hypertens Res

Dental Research Cell (DRC-BRULAC), Saveetha Dental College and Hospital, Saveetha Institute of Medical and Technical Science (SIMATS), Saveetha University, Chennai, 600077, India.

Published: April 2020

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41440-019-0369-5DOI Listing

Publication Analysis

Top Keywords

computational identification
4
identification mirna-7110
4
mirna-7110 pulmonary
4
pulmonary arterial
4
arterial hypertension
4
hypertension pah
4
pah ests
4
ests microrna
4
microrna links
4
links diabetes
4

Similar Publications

The development of deep learning algorithms has transformed medical image analysis, especially in brain tumor recognition. This research introduces a robust automatic microbrain tumor identification method utilizing the VGG16 deep learning model. Microscopy magnetic resonance imaging (MMRI) scans extract detailed features, providing multi-modal insights.

View Article and Find Full Text PDF

Background: In prehospital emergency care, providers face significant challenges in making informed decisions due to factors such as limited cognitive support, high-stress environments, and lack of experience with certain patient conditions. Effective Clinical Decision Support Systems (CDSS) have great potential to alleviate these challenges. However, such systems have not yet been widely adopted in real-world practice and have been found to cause workflow disruptions and usability issues.

View Article and Find Full Text PDF

Gastrointestinal (GI) disease examination presents significant challenges to doctors due to the intricate structure of the human digestive system. Colonoscopy and wireless capsule endoscopy are the most commonly used tools for GI examination. However, the large amount of data generated by these technologies requires the expertise and intervention of doctors for disease identification, making manual analysis a very time-consuming task.

View Article and Find Full Text PDF

Artificial intelligence (AI) is a promising approach to identify new antimicrobial compounds in diverse microbial species. Here we developed an AI-based, explainable deep learning model, EvoGradient, that predicts the potency of antimicrobial peptides (AMPs) and virtually modifies peptide sequences to produce more potent AMPs, akin to in silico directed evolution. We applied this model to peptides encoded in low-abundance human oral bacteria, resulting in the virtual evolution of 32 peptides into potent AMPs.

View Article and Find Full Text PDF

Endoscopy is vital for detecting and diagnosing gastrointestinal diseases. Systematic examination protocols are key to enhancing detection, particularly for the early identification of premalignant conditions. Publicly available endoscopy image databases are crucial for machine learning research, yet challenges persist, particularly in identifying upper gastrointestinal anatomical landmarks to ensure effective and precise endoscopic procedures.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!