Role of the I16-D194 ionic interaction in the trypsin fold.

Sci Rep

Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St. Louis, MO, 63104, USA.

Published: December 2019

AI Article Synopsis

  • Activity in trypsin-like proteases is initiated by a proteolytic cleavage at R15, leading to an ionic interaction between the new N terminus (I16) and a conserved residue (D194), which is crucial for substrate binding and catalysis.
  • The I16-D194 interaction is essential for Na binding and maintaining the transition state's stability, while mutations at I16 or D194 disrupt this interaction, impacting the enzyme's overall stability and functionality.
  • The research highlights the importance of the I16-D194 interaction in the Huber-Bode activation mechanism and its relationship to the allosteric properties of the trypsin fold, demonstrating how mutations shift the enzyme towards a less flexible, lock-and-key binding mode.

Article Abstract

Activity in trypsin-like proteases is the result of proteolytic cleavage at R15 followed by an ionic interaction that ensues between the new N terminus of I16 and the side chain of the highly conserved D194. This mechanism of activation, first proposed by Huber and Bode, organizes the oxyanion hole and primary specificity pocket for substrate binding and catalysis. Using the clotting protease thrombin as a relevant model, we unravel contributions of the I16-D194 ionic interaction to Na binding, stability of the transition state and the allosteric E*-E equilibrium of the trypsin fold. The I16T mutation abolishes the I16-D194 interaction and compromises the architecture of the oxyanion hole. The D194A mutation also abrogates the I16-D194 interaction but, surprisingly, has no effect on the architecture of the oxyanion hole that remains intact through a new H-bond established between G43 and G193. In both mutants, loss of the I16-D194 ionic interaction compromises Na binding, reduces stability of the transition state, collapses the 215-217 segment into the primary specific pocket and abrogates the allosteric E*-E equilibrium in favor of a rigid conformation that binds ligand at the active site according to a simple lock-and-key mechanism. These findings refine the structural role of the I16-D194 ionic interaction in the Huber-Bode mechanism of activation and reveal a functional linkage with the allosteric properties of the trypsin fold like Na binding and the E*-E equilibrium.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6889508PMC
http://dx.doi.org/10.1038/s41598-019-54564-6DOI Listing

Publication Analysis

Top Keywords

ionic interaction
20
i16-d194 ionic
16
trypsin fold
12
oxyanion hole
12
e*-e equilibrium
12
role i16-d194
8
mechanism activation
8
stability transition
8
transition state
8
allosteric e*-e
8

Similar Publications

Multimodal Flexible Sensor for the Detection of Pressing-Bending-Twisting Mechanical Deformations.

ACS Appl Mater Interfaces

December 2024

School of Mechanical Engineering, Hangzhou Dianzi University, Hangzhou 310018, China.

Flexible sensors are increasingly significant in applications such as smart wearables and human-computer interactions. However, typical flexible sensors are spatially limited and can generally detect only one deformation mode. This study presents a novel multimodal flexible sensor that combines three sensing units: optoelectronics, ionic liquids, and conductive fabrics.

View Article and Find Full Text PDF

Voltage-dependent anion channel (VDAC) is the primary conduit for regulated passage of ions and metabolites into and out of a mitochondrion. Calculating the solvation free energy for VDAC is crucial for understanding its stability, function, and interactions within the cellular environment. In this article, numerical schemes for computing the total solvation free energy for VDAC-comprising electrostatic, ideal gas, and excess free energies plus the nonpolar energy-are developed based on a nonuniform size modified Poisson-Boltzmann ion channel (nuSMPBIC) finite element solver along with tetrahedral meshes for VDAC proteins.

View Article and Find Full Text PDF

Understanding RNA-protein interactions is crucial for uncovering the mechanisms of cellular processes and can provide insights into the basis of various diseases, paving the way for the development of targeted therapeutic interventions. Exposure to stress conditions, such as hypoxia, leads to a drop in intracellular pH, which, in turn, alters the ionization states of amino acid residues and RNA bases, affecting the charge distribution and electrostatic interactions between RNA and proteins. In addition, pH also perturbs the structure and dynamics of proteins via the disruption of H-bonds and ionic interactions.

View Article and Find Full Text PDF

Electrostatic Interaction between SARS-CoV-2 and Charged Surfaces: Spike Protein Evolution Changed the Game.

J Chem Inf Model

December 2024

Institut de Ciència de Materials de Barcelona (ICMAB-CSIC), Campus de la UAB, E-08193 Bellaterra, Spain.

Previous works show the key role of electrostatics in the SARS-CoV-2 virus in aspects such as virus-cell interactions or virus inactivation by ionic surfactants. Electrostatic interactions depend strongly on the variant since the charge of the Spike protein (responsible for virus-environment interactions) evolved across the variants from the highly negative Wild Type (WT) to the highly positive Omicron variant. The distribution of the charge also evolved from diffuse to highly localized.

View Article and Find Full Text PDF

Compared to the laboratory preparation of biochar, there is less research on the adsorption of antibiotics by industrial production of biochar in water. In this study, three types of industrial production biochar (peanut shell biochar, sludge biochar, and perishable waste biochar) were selected, and their adsorption performance for tetracycline in composite-polluted water was systematically studied. The results indicated that the Freundlich equation could well fit the adsorption isotherms of the three types of biochar for tetracycline.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!