Strain describes the deformation of a material as a result of applied stress. It has been widely employed to probe transport properties of materials, ranging from semiconductors to correlated materials. In order to understand, and eventually control, transport behavior under strain, it is important to quantify the effects of strain on the electronic bandstructure, carrier density, and mobility. Here, we demonstrate that much information can be obtained by exploring magnetoelastoresistance (MER), which refers to magnetic field-driven changes of the elastoresistance. We use this powerful approach to study the combined effect of strain and magnetic fields on the semimetallic transition metal dichalcogenide [Formula: see text] We discover that WTe shows a large and temperature-nonmonotonic elastoresistance, driven by uniaxial stress, that can be tuned by magnetic field. Using first-principle and analytical low-energy model calculations, we provide a semiquantitative understanding of our experimental observations. We show that in [Formula: see text], the strain-induced change of the carrier density dominates the observed elastoresistance. In addition, the change of the mobilities can be directly accessed by using MER. Our analysis also reveals the importance of a heavy-hole band near the Fermi level on the elastoresistance at intermediate temperatures. Systematic understanding of strain effects in single crystals of correlated materials is important for future applications, such as strain tuning of bulk phases and fabrication of devices controlled by strain.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6926034 | PMC |
http://dx.doi.org/10.1073/pnas.1910695116 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!