Although bubble pinch-off is an archetype of a dynamical system evolving toward a singularity, it has always been described in idealized theoretical and experimental conditions. Here, we consider bubble pinch-off in a turbulent flow representative of natural conditions in the presence of strong and random perturbations, combining laboratory experiments, numerical simulations, and theoretical modeling. We show that the turbulence sets the initial conditions for pinch-off, namely the initial bubble shape and flow field, but after the pinch-off starts, the turbulent time at the neck scale becomes much slower than the pinching dynamics: The turbulence freezes. We show that the average neck size, [Formula: see text], can be described by [Formula: see text], where [Formula: see text] is the pinch-off or singularity time and [Formula: see text], in close agreement with the axisymmetric theory with no initial flow. While frozen, the turbulence can influence the pinch-off through the initial conditions. Neck shape oscillations described by a quasi-2-dimensional (quasi-2D) linear perturbation model are observed as are persistent eccentricities of the neck, which are related to the complex flow field induced by the deformed bubble shape. When turbulent stresses are less able to be counteracted by surface tension, a 3-dimensional (3D) kink-like structure develops in the neck, causing [Formula: see text] to escape its self-similar decrease. We identify the geometric controlling parameter that governs the appearance of these kink-like interfacial structures, which drive the collapse out of the self-similar route, governing both the likelihood of escaping the self-similar process and the time and length scale at which it occurs.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6926068 | PMC |
http://dx.doi.org/10.1073/pnas.1909842116 | DOI Listing |
Langmuir
January 2025
Department of Chemical Engineering, Indian Institute of Technology, Guwahati 781039, Assam, India.
Self-organized contact line instabilities (CLI) of a macroscopic liquid crystal (LC) droplet can be an ingenious pathway to generate a large collection of miniaturized LC drops. For example, when a larger drop of volatile solvent (e.g.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Psychology, Bryn Mawr College, Bryn Mawr, PA, USA.
Persuasion plays a crucial role in human communication. Yet, convincing someone to change their mind is often challenging. Here, we demonstrate that a subtle linguistic device, generic-you (i.
View Article and Find Full Text PDFMath Ann
July 2024
Department of Mathematics, Virginia Tech, Blacksburg, VA 24061 USA.
In this paper we show that if a compact set , , has Hausdorff dimension greater than when or when , then the set of congruence class of simplices with vertices in has nonempty interior. By set of congruence class of simplices with vertices in we mean where . This result improves the previous best results in the sense that we now can obtain a Hausdorff dimension threshold which allow us to guarantee that the set of congruence class of triangles formed by triples of points of has nonempty interior when as well as extending to all simplices.
View Article and Find Full Text PDFPLoS One
January 2025
Department of Basic Sciences, Preparatory Year, King Faisal University, Al-Ahsa, Saudi Arabia.
Our study presents a novel orbit with s-convexity, for illustration of the behavior shift in the fractals. We provide a theorem to demonstrate the escape criterion for transcendental cosine functions of the type Tα,β(u) = cos(um)+αu + β, for [Formula: see text] and m ≥ 2. We also demonstrate the impact of the parameters on the formatted fractals with numerical examples and graphical illustrations using the MATHEMATICA software, algorithm, and colormap.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Computer Science and Information Systems, Birla Institute of Technology and Science-Pilani, Hyderabad Campus, Hyderabad, 500078, India.
The motivation for this article stems from the fact that medical image security is crucial for maintaining patient confidentiality and protecting against unauthorized access or manipulation. This paper presents a novel encryption technique that integrates the Deep Convolutional Generative Adversarial Networks (DCGAN) and Virtual Planet Domain (VPD) approach to enhance the protection of medical images. The method uses a Deep Learning (DL) framework to generate a decoy image, which forms the basis for generating encryption keys using a timestamp, nonce, and 1-D Exponential Chebyshev map (1-DEC).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!