Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Water pollution by heavy metal ions especially Hg(II) and Pb(II) is one of the most important concerns because of their harmful effects on human health and environment sustainability. Here, we developed FeO@TMU-32 metal-organic framework (MOF)-based nanocomposite by applying pore functionalization and surface-charge modulation strategies. Based on synergic effects of these strategies, FeO@TMU-32 nanocomposite shows very high capacity toward Hg(II) and Pb(II) metal ions. TMU-32 (with formula [Zn(OBA)(DPU)]·2DMF·HO where HOBA and DPU are (4,4'-oxybis(benzoic acid)) and 1,3-di(pyridin-4-yl)urea)) is decorated with urea functional groups containing carbonyl and amine groups that can interact with metal ions. As results, TMU-32 show very high capacity toward Hg(II) and Pb(II) ions. To improve the TMU-32 capacity toward Hg(II) and Pb(II) cations, we tried to modulate the surface-charge of TMU-32 as a host-framework. Surface-charge modulation strategy had been conducted through encapsulation of FeO nanoparticles by TMU-32 in an in-situ synthesis procedure and synthesis of FeO@TMU-32 nanocomposite. FeO@TMU-32 nanocomposite shows improved removal capacity (45 % and 54 % toward Pb(II) and Hg(II)) rather pristine TMU-32 framework because of urea decorated framework and charge modulated surface. FeO@TMU-32 nanocomposite adsorb 1600 mg.g of Pb(II) and 905 mg.g of Hg(II) which extremely rare in the literature. Such improvement can be related to the electrostatic interaction between cationic nature of Pb(II) and Hg(II) and negative charge of the FeO@TMU-32 adsorbent.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jhazmat.2019.121667 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!