A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Wastewater sources of per- and polyfluorinated alkyl substances (PFAS) and pharmaceuticals in four Canadian Arctic communities. | LitMetric

Wastewater sources of per- and polyfluorinated alkyl substances (PFAS) and pharmaceuticals in four Canadian Arctic communities.

Sci Total Environ

Richardson College for the Environment, University of Manitoba, Winnipeg, MB, Canada; Department of Chemistry, The University of Winnipeg, Winnipeg, MB, Canada; Department of Environment and Geography, University of Manitoba, Winnipeg, MB, Canada; Escuela de Química, Instituto Tecnológico de Costa Rica, Cartago 159-7050, Costa Rica; School of Environment, Jinan University, Guangzhou 510632, China. Electronic address:

Published: March 2020

Effective removal of organic contaminants in wastewater effluent poses a challenge to small communities worldwide, particularly in the Arctic due to infrastructure challenges and harsh climates. To understand better the efficacy of current treatment options and risks posed by pharmaceuticals and pesticides on receiving waters in the Arctic, four representative human communities in Nunavut, Canada were evaluated. Per- and polyfluorinated alkyl substances (PFASs) were also investigated in one community. These communities have treatment ranging from primary lagoons, engineered wetlands, and natural lakes. Pharmaceuticals and pesticides were measured using the organic diffusive gradients in thin film (o-DGT) passive sampler in summer 2018. Of the 34 compounds studied, seven pharmaceuticals were found at least once: atenolol, carbamazepine, metoprolol, naproxen, sulfapyridine, sulfamethoxazole, and trimethoprim. With the exception of 5210 ng naproxen/L in Iqaluit, most receiving waters showed negligible amounts of contamination. Iqaluit had the poorest overall system performance while Baker Lake had the best. Measured pharmaceutical concentrations do not appear to pose a significant acute hazard to receiving waters at this time, based on known toxicological endpoints. PFAS concentrations were found to be over 100-fold greater in Cambridge Bay wastewater than previously reported Arctic seawater. Results suggest that wastewater may be an important point source of PFASs in Arctic communities. The o-DGT passive samplers performed well in marine Arctic settings. We recommend further testing of wastewater efficiencies in Arctic communities along with evaluations of seasonal variations.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.scitotenv.2019.134494DOI Listing

Publication Analysis

Top Keywords

arctic communities
12
receiving waters
12
per- polyfluorinated
8
polyfluorinated alkyl
8
alkyl substances
8
pharmaceuticals pesticides
8
o-dgt passive
8
arctic
7
communities
6
wastewater
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!