The marine fish mummichog (Fundulus heteroclitus), extensively used as research model, including in ecotoxicology, for over a century has been surpassed by other fish species. This fact may be associated with the lack of cell lines from this species, excellent models for the comprehension of fish physiology, immunology, toxicology and virology, that contribute to the reduction in the number of animals used in research. We have generated, for the first time, a brain-derived cell line from mummichog, FuB-1, and evaluated its application to the fields of fish virology, immunity and toxicology. First, FuB-1 cells show epithelial morphology and neural stem/astroglial origin. Secondly, FuB-1 cells effectively supports the replication of both spring viremia carp (SVCV) and infectious pancreatic necrosis (IPNV) viruses, but not nodavirus (NNV), indicating its potential use for fish virology. Related to this, FuB-1 cells infected with NNV up-regulate the transcription of genes related to the antiviral immune response, leading to cell resistance; while they are unaltered when infected with IPNV and SVCV, facilitating viral replication. Finally, FuB-1 cells were used for toxicological purposes and we demonstrated that exposure to either polystyrene nanoplastics (PS-100) or several human-usage pharmaceuticals are cytotoxic. Additionally, PS-100 particles increase the antioxidant catalase and glutathione S-transferase activities and decrease the total non-protein thiols in FuB-1 cells. However, PS-100 particles are able to reduce the cytotoxic effects induced by the pharmaceuticals. In conclusion, we have generated a cell line from mummichog, which might represent a valuable model for fish studies in the fields of virology, immunology and toxicology.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.scitotenv.2019.134821 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!