This study evaluated the influence of ageing of ZnO nanoparticles (NPs) applied to soil on the potential availability and chemical speciation of Zn, and also of their toxicity to aquatic organisms due to transfer of contaminants from soil to water. To this end, soil samples were spiked with two types of bare nanoparticles: b1ZnO NPs (rod- and elongated-shaped) and b2ZnO NPs (near-spherical shaped) and ZnO NPs coated with (3-aminopropyl)triethoxysilane (cZnO NPs) within the 0-800 mg Zn kg soil dose range, and were left to age for 0, 30, 60 and 90 days. The available concentration and speciation of Zn in soil were determined by the DGT (diffusive gradients in thin films) technique and sequential extraction procedures, respectively. The toxicity of the aqueous extracts from the ZnO NP-treated soils was assessed in vitro in established fish cell lines (RTG-2). The highest distribution percentages of the applied Zn occurred in the organically complexed (OC), followed by the exchangeable (EXC) fraction, for all NP types, applied doses and incubation times. The toxicity of NPs depended on their intrinsic properties: b1ZnO NPs affected the membrane function, reductase enzyme activity and, to a lesser extent, reactive oxygen species (ROS) levels of fish cells, whereas b2ZnO NPs and cZnO NPs affected mainly ROS generation. Ageing increased Zn soil availability, but toxicity to fish cells showed no trend over time. The particle dissolution of ZnO NPs did not explain the observed toxicity, hence a nanoparticles-specific effect should be assumed. The findings of this study seem to indicate that the transfer of ZnO NP from contaminated soils to aquatic ecosystems should be addressed.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.scitotenv.2019.135713 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!