Preparation of hydrophobic hierarchical pore carbon-silica composite and its adsorption performance toward volatile organic compounds.

J Environ Sci (China)

Research Institute of Catalytic Reaction Engineering, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, China. Electronic address:

Published: January 2020

Carbon-silica materials with hierarchical pores consisting of micropores and mesopores were prepared by introducing nanocarbon microspheres derived from biomass sugar into silica gel channels in a hydrothermal environment. The physicochemical properties of the materials were characterized by nitrogen physical adsorption (BET), scanning electron microscopy (SEM), and thermogravimetric (TG), and the adsorption properties of various organic waste gases were investigated. The results showed that microporous carbon materials were introduced successfully into the silica gel channels, thus showing the high adsorption capacity of activated carbon in high humidity organic waste gas, and the high stability and mechanical strength of the silica gel. The dynamic adsorption behavior confirmed that the carbon-silica material had excellent adsorption capacity for different volatile organic compounds (VOCs). Furthermore, the carbon-silica material exhibited excellent desorption characteristics: adsorbed toluene was completely desorbed at 150°C, thereby showing superior regeneration characteristics. Both features were attributed to the formation of hierarchical pores.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jes.2019.05.003DOI Listing

Publication Analysis

Top Keywords

silica gel
12
volatile organic
8
organic compounds
8
hierarchical pores
8
gel channels
8
organic waste
8
adsorption capacity
8
carbon-silica material
8
adsorption
6
preparation hydrophobic
4

Similar Publications

A series of anionic poly(acrylamide--sodium acrylate)/poly(ethylene glycol), PAN/PEG, hybrids were conveniently synthesized free radical aqueous polymerization by integrating bentonite, kaolin, mica, graphene and silica, following a simple and eco-friendly crosslinking methodology. A comparative perspective was presented on how integrated nanofillers affect the physicochemical properties of hybrid gels depending on the differences in their structures. Among the five types of nanofillers, bentonite-integrated hybrid gel had the highest water absorbency, while graphene-integrated gel had the lowest.

View Article and Find Full Text PDF

Insecticidal and Bactericidal Activities of Vahl and Molecular Docking Analysis of Insect Acetylcholinesterase.

Turk J Pharm Sci

January 2025

University of Tlemcen, Faculty of Science, Department of Chemistry, Laboratory of Natural and Bioactive Substances, Tlemcen, Algeria.

Objectives: This study focused on the phytochemical, insecticidal, and bactericidal activities of Vahl, as well as molecular docking analysis of an acetylcholinesterase (AChE) inhibitor as a promising natural insecticide.

Materials And Methods: The leaves of were successively extracted with n-hexane, acetone, and methanol. Silica gel column chromatography of the methanol extract yielded compound 1.

View Article and Find Full Text PDF

Preparation of novel chiral stationary phases based on chiral metal-organic cages enable extensive HPLC enantioseparation.

Anal Chim Acta

February 2025

Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, No. 5 Zhongguancun South Street, Beijing, 100081, China. Electronic address:

Background: The metal organic cages (MOCs) are an emerging type of porous material that has attracted considerable research interest due to their unique properties, including good stability and well-defined intrinsic cavities. The chiral MOCs with porous structures have broad application prospects in enantiomeric recognition and separation. However, there are almost no relevant reports on chiral MOCs as chiral stationary phases (CSPs) for enantioseparation by high-performance liquid chromatography (HPLC).

View Article and Find Full Text PDF

5β-hydroxycostic acid from Laggera alata ameliorates sepsis-associated acute kidney injury through its anti-inflammatory and anti-ferroptosis effects via NF-κB and MAPK pathways.

J Ethnopharmacol

January 2025

State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300353, People's Republic of China. Electronic address:

Ethnopharmacological Relevance: The whole plant of Laggera alata is frequently utilize to remedy inflammatory diseases including nephritis as a traditional Chinese medicine. However, its active ingredients and mechanism of action against sepsis-associated acute kidney injury (SA-AKI) are unknown.

Aim Of The Study: This study aimed to identify active compounds from L.

View Article and Find Full Text PDF

Fractionation and identification of ocular protective compounds from kochiae fructus against oxidative damage in retinal pigment epithelium cells.

J Ethnopharmacol

January 2025

Chinese Medicine Research and Development Center, China Medical University Hospital, Taichung, 40447, Taiwan; Graduate Institute of Integrated Medicine, College of Chinese Medicine, China Medical University, Taichung, 40402, Taiwan; Master Program of Pharmaceutical Manufacture, College of Pharmacy, China Medical University, Taichung, 40402, Taiwan; Department of Medical Laboratory Science and Biotechnology, College of Medical and Health Science, Asia University, Taichung, 41354, Taiwan. Electronic address:

Ethnopharmacological Relevance: Kochiae Fructus, the ripe fruit of Kochia scoparia, is a traditional Chinese medicine commonly used to treat eye discomforts and vision problems. Although Kochiae Fructus is mentioned in many classical Chinese medical texts, its protective effects and the roles of its active phytochemicals in eye treatment still lack scientific exploration.

Aim Of The Study: This study aimed to clarify the protective effects and identify the active fractions and compounds of Kochiae Fructus against oxidative stress-induced retinal pigment epithelium (RPE) cell death.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!