Biosynthesis of polyketides by two type III polyketide synthases from .

J Asian Nat Prod Res

State Key Laboratory of Bioactive Substance and Function of Natural Medicines; CAMS Key Laboratory of Enzyme and Biocatalysis of Natural Drugs; NHC Key Laboratory of Biosynthesis of Natural Products, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China.

Published: May 2020

Various bioactive polyketides have been found in However, the polyketide synthases (PKSs), which participate in biosynthesis of polyketides in remain unknown. In this study, two type III PKSs (AbPKS1 and AbPKS2) were identified from . AbPKS1 and AbPKS2 were able to utilize malonyl-CoA to yield heptaketides (TW93a and aloesone) and octaketides (SEK4 and SEK4b), respectively. AbPKS1 also exhibited catalytic promiscuity in recognizing CoA thioesters of aromatics to produce unusual polyketides. What Is more, a whole cell biocatalysis system with the capability of producing 26.4 mg/L of SEK4/SEK4b and 2.1 mg/L of aloesone was successfully established.

Download full-text PDF

Source
http://dx.doi.org/10.1080/10286020.2019.1674287DOI Listing

Publication Analysis

Top Keywords

biosynthesis polyketides
8
type iii
8
polyketide synthases
8
abpks1 abpks2
8
polyketides type
4
iii polyketide
4
synthases bioactive
4
bioactive polyketides
4
polyketides polyketide
4
synthases pkss
4

Similar Publications

Exploring potentially synthetic genes related to diarrhetic shellfish toxins production in Prorocentrum sp. via comparative transcriptomics.

Ecotoxicol Environ Saf

January 2025

College of Life Science and Technology, and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Jinan University, Guangzhou 510362, China. Electronic address:

Harmful algal blooms (HABs), exacerbated by climate change and environmental disturbances, pose global challenges due to marine toxin contamination, particularly diarrhetic shellfish toxins (DSTs). DSTs are prevalent marine toxins, and understanding their synthesis is vital for managing fisheries and mitigating environmental triggers. This study delves into the synthesis mechanisms of DSTs in Prorocentrum arenarium and Prorocentrum lima, which vary in toxin types and concentrations.

View Article and Find Full Text PDF

Background: Streptomyces roseochromogenes NRRL 3504 produces clorobiocin, an aminocoumarin antibiotic that inhibits DNA replication. No other natural products have been isolated from this bacterium so far, despite the presence of a rich repertoire of specialized metabolite biosynthesis gene clusters (smBGCs) within its genome. Heterologous expression of smBGCs in suitable chassis speeds up the discovery of the natural products hidden behind these sets of genes.

View Article and Find Full Text PDF

Abamectin is an insecticide, miticide and nematicide that has been extensively used in agriculture for many years. The excessive use of abamectin inevitably pollutes water and soil and might even cause adverse effects on aquatic biota. However, it is currently unclear how abamectin exposure causes neurotoxicity in aquatic organisms.

View Article and Find Full Text PDF

From the 1950s to the present, the main tool for obtaining fungal industrial producers of secondary metabolites remains the so-called classical strain improvement (CSI) methods associated with multi-round random mutagenesis and screening for the level of target products. As a result of the application of such techniques, the yield of target secondary metabolites in high-yielding (HY) strains was increased hundreds of times compared to the wild-type (WT) parental strains. However, the events that occur at the molecular level during CSI programs are still unknown.

View Article and Find Full Text PDF

Exploring the Potential of Malvidin and Echiodinin as Probable Antileishmanial Agents Through In Silico Analysis and In Vitro Efficacy.

Molecules

January 2025

Computational Biology and Chemistry Research Group, Vicerrectorado de Investigación, Universidad Católica de Santa María, Arequipa 04000, Peru.

Leishmaniasis, a neglected tropical disease caused by species, presents serious public health challenges due to limited treatment options, toxicity, high costs, and drug resistance. In this study, the in vitro potential of malvidin and echioidinin is examined as antileishmanial agents against , , and , comparing their effects to amphotericin B (AmpB), a standard drug. Malvidin demonstrated greater potency than echioidinin across all parasite stages and species.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!