A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Molecular and behavioural evidence that interdependent photo - and chemosensory systems regulate larval settlement in a marine sponge. | LitMetric

Marine pelagic larvae use a hierarchy of environmental cues to identify a suitable benthic habitat on which to settle and metamorphose into the adult phase of the life cycle. Most larvae are induced to settle by biochemical cues and many species have long been known to preferentially settle in the dark. Combined, these data suggest that larval responses to light and biochemical cues may be linked, but this has yet to be explored at the molecular level. Here, we track the vertical position of larvae of the sponge Amphimedon queenslandica to show that they descend to the benthos at twilight, by which time they are competent to respond to biochemical cues, consistent with them naturally settling in the dark. We use larval settlement assays under three different light regimes, combined with transcriptomics on individual larvae, to identify candidate molecular pathways underlying larval settlement. We find that larvae do not settle in response to biochemical cues if maintained in constant light. Our transcriptome data suggest that constant light actively represses settlement via the sustained up-regulation of two putative inactivators of chemotransduction in constant light only. Our data suggest that photo- and chemosensory systems interact to regulate larval settlement via nitric oxide and cyclic guanosine monophosphate signalling in this sponge, which belongs to one of the earliest-branching animal phyla.

Download full-text PDF

Source
http://dx.doi.org/10.1111/mec.15318DOI Listing

Publication Analysis

Top Keywords

larval settlement
16
biochemical cues
16
constant light
12
chemosensory systems
8
regulate larval
8
larval
5
settlement
5
larvae
5
cues
5
light
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!