Bottom ash from waste incineration is heterogeneous and contains different materials. Previous studies on the material composition of bottom ash provide only limited information as to composition, because large pieces present in bottom ash were not investigated nor were all materials were separated and analysed. The objective of the present study is to provide the complete and detailed composition of bottom ash encompassing and extensive range of different materials. Altogether, nine bottom ash samples with a mass of 3000 kg each were sieved to eight size fractions, whereby small particles adhering to larger pieces were separated by water and added to the respective size fractions. In the sorting analysis of all size fractions, the materials enclosed in molten mineral material and materials present as composites (e.g. transformers and batteries) were considered. The material characterisation revealed that the size fraction > 50 mm contains most of the iron (up to 50% of the total iron) and copper (about 20% of the total copper), while batteries, coins, silver and gold are almost exclusively present between 16 and 50 mm. The fractions between 8 and 16 mm show the highest share of aluminium (up to 50% of the total aluminium) and glass (up to 60% of the total glass). While the metal content is underestimated, if large pieces of material are disregarded, the multi-step approach applied in this study enables a complete determination of materials in bottom ash, which is essential for optimising material recovery in bottom ash treatment.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.wasman.2019.11.036DOI Listing

Publication Analysis

Top Keywords

bottom ash
32
size fractions
12
complete determination
8
material composition
8
waste incineration
8
bottom
8
ash
8
composition bottom
8
large pieces
8
50% total
8

Similar Publications

As a typical ecologically fragile area, the Wudong Coal Mine region in Xinjiang generates large accumulations of coal gangue each year, which, in the alkaline soil environment, can easily lead to significant leaching and accumulation of As. This study developed a stabilizer (CFD) using cement, fly ash, and desulfurized gypsum to modify in-situ soil in the Xinjiang mining area, resulting in a modified solidified soil with excellent geotechnical performance and As stabilization capability. The study results showed that when CFD content exceeded 14.

View Article and Find Full Text PDF

The formation of an aluminosilicate gel structure made of alkali-activated materials (AAMs) was conducted through an alkali-activation reaction of the solid precursors (fly ash, metakaolin, and wood ash). Fly and wood ash are by-products of the burning process of coal and wood, respectively. Alkali-activated materials of aluminosilicate origin, made from the different ashes, fly and wood, are very attractive research targets and can be applied in various technological fields due to their thermal stability, resistance to thermal shock, high porosity, high sustainability, and finally, low energy loss during production.

View Article and Find Full Text PDF

Nanoscale Fe(0)-zeolite composite derived from coal bottom ash for efficient treatment of Cr(VI)-contaminated groundwater: Unveiling the importance of locations for surface-bound Fe(II) and Fe(0) passivation products.

J Hazard Mater

January 2025

Department of Civil and Environmental Engineering, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea; Department of Environmental Engineering, Graduate School, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea. Electronic address:

The synthesis of coal bottom ash-induced zeolite (Si-Al material) has been widely reported; however, the selective recovery of the three main elements, viz., Si, Al, and Fe, from coal bottom ash for the synthesis of reactive adsorbents has not yet been reported. In this study, we separated the magnetic and non-magnetic fractions of coal bottom ash to selectively recover Fe and Si-Al for synthesizing nanoscale zero-valent iron@zeolite (NZVI@ZBA) composites with uniform formation of Fe(0) nanoparticles on the ZBA surface.

View Article and Find Full Text PDF

Practical application of CS-CG Stabilised soil in subgrade construction.

Environ Technol

January 2025

Jinan Licheng District Tongda municipal Engineering Department, Jinan, People's Republic of China.

To enhance the water stability and bearing capacity of the Shandong Ming Dong Expressway's soaked subgrade, carbide slag (CS) and coal gangue powder (CG) were used as stabilisers. Stabiliser dosages of 5%, 10%, and 15%, with the CS:CG ratios of 0:100, 30:70, 50:50, 70:30, and 100:0, were tested. The study evaluated the performance of CS-CG stabilised soil through unconfined compressive strength (UCS) tests at 7 and 28 days, six dry-wet cycles, a 30-day water immersion test, pH test, swell rate test, XRD, SEM, and MIP analyses.

View Article and Find Full Text PDF

In China, a significant amount of coal fly ash is stored or used for landfill reclamation. The contaminants in coal fly ash (CFA) leachate can cause regional soil and groundwater contamination during long-term storage. This paper focuses on a coal gangue comprehensive utilisation power plant in Fenyang City, Shanxi Province, China, where the leaching characteristics of CFA were investigated by leaching tests.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!